A NOTE ON SMALL SIMILARITY GROUPS

Burkhard Alpers*

In this note we consider "small" similarity groups which contain only products of motions and magnifications. Characterizations for this situation are given for regular finite-dimensional metric vector spaces over some fields.

Throughout this note $\Phi = (V, K, q)$ denotes a regular finite-dimensional metric vector space over a field of characteristic $\neq 2$ where q is the quadratic form. We use the notions of [1] with respect to geometric terminology and that of [8] as far as the algebraic theory of quadratic forms is concerned. Thus, $D(\Phi) := q(V) \setminus \{0\}$ is the set of nonzero represented elements, and $G(\Phi) := \{ \lambda \in K^* | \lambda \Phi \cong \Phi \}$ denotes the set of similarity factors of Φ where $K^* := K \setminus \{0\}$. As usual, we denote by Φ also its isometry class and the corresponding element in the Witt ring $W(K)$ of K. If $1 \in D(\Phi)$, then $G(\Phi) \subset D(\Phi)$. Moreover, $G(\Phi) = G(\alpha \Phi) \forall \alpha \in K^*$, $G(\Phi) = G(\Phi \perp n \times \langle 1, -1 \rangle)$ for $n \in \mathbb{N}$, and $G(\Phi) \cap G(\Psi) \subset G(\Phi \perp \Psi)$ where Ψ is another regular finite-dimensional metric vector space over K. In [2], we investigated the case $D(\Phi) = G(\Phi)$ when Φ is said to be round. Geometrically, this means that the group of linear similarities acts transitively on the set of non-isotropic vectors (cf. [1]). Here, we want to state some results on the other "extreme" case when $G(\Phi) = K^{*2} := \{ x^2 | x \in K^* \}$ (note that always $K^{*2} \subset G(\Phi)$). From the geometric point of view this means that any linear similarity is a product of a magnification (a mapping of the type $V \rightarrow V : x \mapsto \lambda x$ where $\lambda \in K^*$) and an isometry. In case of $\dim V \in 2\mathbb{N} + 1$, we have $G(\Phi) = K^{*2}$ (cf. [2]). For some fields this turns out to be already a necessary condition, but in general this is wrong.

In the sequel we use frequently the fact that Pfister forms, i.e., forms of the type $\langle 1, a_1 \rangle \otimes \ldots \otimes \langle 1, a_n \rangle$, are round.

* This note was written during the author's stay as a postdoctoral fellow at the University of Saskatchewan in Saskatoon. The author would like to thank this institution, in particular Prof. Marshall, for the hospitality and the inspiring atmosphere.
1. Let K be a quadratically closed field, i.e., $K = K^2$. Then, we have obviously $G(\Phi) = K^{*2}$ for any space Φ.

2. Let K be non-formally real and $1 < u(K) \leq 4$ (e.g., finite fields, p-adic fields, non-real global fields; for the u-invariant cf. [8], p.102). Assume $\dim \Phi \in 2\mathbb{N}^*$. If $\dim \Phi = 2$, then $\Phi \cong c(1,a)$, hence $G(\Phi) = D((1,a)) \neq K^{*2}$ since K is not pythagorean (or by Kneser's lemma, cf. [8], 2.16.7). If $\dim \Phi \geq 4$, then we may assume $\cong (1,a,b,c) \perp n \times (1,-1)$ (where $a,b,c \in K^*$), hence $G(\Phi) = G((1,a,b,c))$. In the Witt ring $W(K)$ the equation $(1,a,b,c) = (1,a,b,ab) - ab(1,-abc)$ holds where $(1,a,b,ab)$ is a universal Pfister form since $u(K) \leq 4$. Thus, $D((1,a,b,ab)) \cap D((1,-abc))$ contains a nonsquare d, and $d \in G((1,a,b,c))$. Summarizing the above remarks we get for a space Φ over K:

$$G(\Phi) = K^{*2} \iff \dim \Phi \in 2\mathbb{N} + 1.$$

3. Let K be a formally real field with u-invariant 2 (e.g., $\mathbb{R}(t)$ or any formally real algebraic extension thereof that is not pythagorean, cf. [3], p. 126). Then, we have again

$$G(\Phi) = K^{*2} \iff \dim \Phi \in 2\mathbb{N} + 1.$$

Proof. Let Φ be an even-dimensional space, $\Phi \cong a_1(1,b_1) \perp \ldots \perp a_n(1,b_n)$. If s is a sum of squares, then $(1,-s) \otimes (1,b_i)$ is torsion, hence hyperbolic. From this we get $s \in D((1,b_i))$ for any nonzero sum of squares s and $i = 1, \ldots, n$. Hence, $G(\Phi)$ contains non-squares.

4. Let K be a formally real global field, and let $\dim \Phi \in 2\mathbb{N}^*$. We have $\Phi \cong a_1(1,b_1) \perp \ldots \perp a_n(1,b_n)$. A theorem of Krüskemper ([6], (1.32)) implies that $\bigcap_{j=1}^n D((1,b_j))$ contains infinitely many square classes. Since $G(\Phi) \supset \bigcap_{j=1}^n D((1,b_j))$, we get again

$$G(\Phi) = K^{*2} \iff \dim \Phi \in 2\mathbb{N} + 1.$$

We do not need the strong theorem of Krüskemper that makes use of the Dirichlet-density-theorem. We give the sketch of a proof using the Hasse-Minkowski-theorem as in [4]: First assume $\dim \Phi \in 4\mathbb{N}$ and wlog. $1 \in D(\Phi)$. Let $\Phi \cong (1,a_2,\ldots,a_n)$. Then, $\Phi = \langle \det \Phi, a_2,\ldots,a_n \rangle + (1,-\det \Phi)$ in $W(K)$. By the Hasse-Minkowski-theorem (or by $u(K) = 4$), we have $\lambda(\langle \det \Phi, a_2,\ldots,a_n \rangle \cong \langle \det \Phi, a_2,\ldots,a_n \rangle$ for any totally positive $\lambda \in K^*$ (cf. [4]). Similar as in the proof of [4](2.2) (using the approximation theorem and the local square theorem), we get that $\langle 1,-\det \Phi \rangle$ represents a totally positive non-square x. Hence, $x \in G(\Phi) \setminus K^2$. Now, assume $\dim \Phi \in 2 + 4\mathbb{N}$, $1 \in D(\Phi)$, and $\Phi \cong (1,a_2,\ldots,a_n)$. Then, $\Phi = (1,-1,-\det \Phi, a_2,\ldots,a_n) + (1,\det \Phi)$ where $\det ((1,-1,-\det \Phi, a_2,\ldots,a_n)) = 1$. Hence, we can proceed as in the first case.

5. Let K be a formally real pythagorean field which has the strong approximation property (SAP; cf. [7]; e.g., euclidean fields). For Φ with $\dim \Phi \in 2\mathbb{N}^*$, we prove

$$G(\Phi) = K^{*2} \iff sgn_P \Phi \neq 0 \quad \forall \text{ orderings } P.$$