CHARACTERIZING COMPACT UNIONS OF TWO STARSHAPED SETS IN R^d

Marilyn Breen

Set S in R^d has property K_2 if and only if S is a finite union of d-polytopes and for every finite set F in bdry S there exist points c_1, c_2 (depending on F) such that each point of F is clearly visible via S from at least one c_i, $i = 1, 2$. The following characterization theorem is established: Let $S \subseteq R^d$, $d \neq 2$. Set S is a compact union of two starshaped sets if and only if there is a sequence $\{S_j\}$ converging to S (relative to the Hausdorff metric) such that each set S_j satisfies property K_2. For $S \subseteq R^2$, the sufficiency of the condition above still holds, although the necessity fails.

1. INTRODUCTION

We begin with some definitions from [1]. Let S be a subset of R^d. Point s in S is called a point of local convexity of S if and only if there is some neighborhood N of s such that $N \cap S$ is convex. For points x and y in S, we say x sees y via S (x is visible from y via S) if and only if the segment $[x, y]$ lies in S. Similarly, x is clearly visible from y via S if and only if there is some neighborhood N of x such that y sees via S each point of $N \cap S$. Finally, set S is starshaped if and only if there is some point p in S such that p sees via S each point of S, and the set of all such points p is called the (convex) kernel of S.

A well-known theorem of Krasnosel'skii [3] states that if S is a nonempty compact set in R^d, then S is starshaped if and only if every $d + 1$ boundary points of S are visible via S from a common point. In [2], the notion of clear visibility, together with work by Lawrence, Hare, and Kenelly [4], were used to obtain a Krasnosel'skii-type theorem for unions of two starshaped sets in the plane.

A 3-dimensional analogue of this result was established in [1], leading to a characterization theorem for compact unions of two starshaped sets in R^3. Here the 3-dimensional characterization is extended to d-dimensional sets for all $d \geq 3$.

The following terminology will be used: Conv S, aff S, cl S, int S, rel int S, bdry S, rel bdry S, and card S will denote the convex hull, affine hull, closure, interior, relative interior, boundary, relative boundary, and cardinality, respectively, for set S. For x in S, A_x will represent $\{z : z$ is clearly visible via S from $x\}$. The reader is referred to Valentine [6] and to Lay [5] for a discussion of these concepts.

2. THE RESULTS.

DEFINITION 1. Let S be a finite union of d-polytopes C_1, \cdots, C_n in R^d. For F a facet of some C_i, we say F is a facet of S at point t if and only if for every neighborhood M of t, $M \cap F \cap$ bdry S contains a $(d - 1)$-dimensional neighborhood.

DEFINITION 2. Let $S \subseteq R^d$. We say S has property K_2 if and only if S is a finite union of d-polytopes and for every finite set $F \subseteq$ bdry S there exist points c_1, c_2 (depending on F) such that each point of F is clearly visible via S from at least one c_i, $i = 1, 2$.

Our first result is a d-dimensional analogue of [1, Lemma 3].

LEMMA 1. Let S be a compact set in R^d, $d \geq 3$, and assume that S is a finite union of d-polytopes C_1, \cdots, C_n. Let P be a plane in R^d, with B a bounded component of $P \cap S$. For w a point of local convexity of cl B, w an endpoint of edge $e \subseteq$ rel bdry B, there exists a hyperplane H such that the following are true:
1) $H \cap P$ is a line containing e.
2) For N an appropriate neighborhood of w, $(\text{cl } B) \cap N$ is convex, $B \cap N$ lies in one open halfspace H_2 determined by H, and A_w lies in the opposite closed halfspace cl H_1.

Proof. Clearly cl B is a closed polygonal region with rel bdry $B \subseteq$ bdry S. Since every boundary point of S lies in a facet of some C_i set, each point of e lies in a facet of some C_i set. However, there are only finitely many such facets so some of the facets necessarily contain a nondegenerate sequence in e converging to w. Let \mathcal{F} denote this collection of facets. Then for F in \mathcal{F}, F contains a nondegenerate segment s_F at w along edge