WEAK STABILITY OF ALMOST REGULAR CONTACT FOLIATIONS

Augustin Banyaga and Philippe Rukimbira

We prove that on a compact manifold, a contact foliation obtained by a small C^1 perturbation of an almost regular contact flow has at least two closed characteristics. This solves the Weinstein conjecture for contact forms which are C^1-close to almost regular contact forms.

1. INTRODUCTION

A contact form on a $(2n + 1)$-dimensional manifold M is a 1-form α such that $\alpha \wedge (d\alpha)^n$ is everywhere nonzero. The unique nonsingular vector field ξ_α on M determined by the equations

$$i(\xi_\alpha)\alpha = 1, \quad i(\xi_\alpha)d\alpha = 0,$$

is called the characteristic vector field or the Reeb field of α. The flow lines of ξ_α are called the characteristics and the foliation of M by characteristics, the contact foliation.

Thomas [20] introduced the notion of almost regular contact forms: those forms having almost regular characteristic fields, which means that each point in M belongs to a flow box pierced by the flow only a finite number of times. This implies that if M is compact, the orbits are closed 1-dimensional submanifolds, i.e., circles. By a theorem of Wadsley [22], there is a C^∞ circle action with same orbits. If this action is free, then the contact form is said to be regular.

1Supported in part by NSF Grant DMS 90-01861

MSC 58F22, 58F18, 53C15

Key words and phrases: almost regular contact form, contact foliation, characteristic, weak stability, contact metric structure, Weinstein conjecture.
A compact foliation is a foliation with all leaves compact. For instance, an almost regular contact foliation on a compact manifold is a compact foliation.

A compact foliation is stable if any small perturbation of the foliation has at least one compact leaf. The problem of stability of compact foliations is a deep problem which has been studied by many authors, for instance [7], [8], [17].

The goal of this paper is to prove a weak form of stability of almost regular contact foliations:

THEOREM. Let \mathcal{F}' be a contact foliation which is a small C^1-perturbation of an almost regular contact foliation \mathcal{F} on a compact manifold. Then \mathcal{F}' has at least two compact leaves.

REMARKS.
1. In [2], it was observed that the particular case of this result for regular contact forms can be derived from Ginzburg's work [9].
2. Seifert [18] proved that on \mathbb{S}^3, the contact foliation corresponding to Hopf circles is stable. This prompted him to make his famous conjecture (later disproved by Schweitzer [17]).
3. The Weinstein conjecture [23] asserts that the contact flow of a contact compact (simply connected) manifold should have at least one periodic orbit. Our theorem proves this fact for contact forms which are C^1-close to almost regular contact forms. For a summary of the Weinstein conjecture and results obtained to date, we refer to [2], [11], [21].
4. A contact form is called R-contact if its characteristic vector field is Killing with respect to some riemannian metric. In [2], it was observed that the Weinstein conjecture is true for R-contact forms as a consequence of the generalization by Molino of the Atiyah-Guillemin-Sternberg momentum map and Molino's theory of riemannian foliations [14], [15]. For R-contact forms, this result can be established by a simplified version of the proof of our theorem. Moreover, in [5], we have found a new, even simpler proof of this fact.

Acknowledgements. The final stage of this work was done while the first author was enjoying the hospitality of the University of Maryland; it is a pleasure to thank that institution and Professor Gromov for his invitation. The second author would like to thank The Pennsylvania State University for its support during the preparation of this work.

2. **A LOCAL VARIATIONAL SETTING**

Our strategy is to write down a “generating” function on M, which is constant along closed orbits. Therefore its minimum and maximum lie on different closed orbits, and hence there will be at least two closed orbits.