CUBIC LINES RELATIVE TO A TRIANGLE

Rubio, Pablo

An extension of the traditional geometry of the triangle is derived through the construction of two 30-points particular cubics. Two generation procedures founded on triangular quadratic transformations and dual associate properties of the two cubics are presented.

1. INTRODUCTION

The existence of a curve K of third degree, relative to any triangle ABC, is proved, so that the following thirty significative points of the triangle to be incident with K: the vertexes A, B, C; the centroid G; the Lemoine point L; the midpoints of the sides A_1, B_1, C_1; the circumcenter O; the orthocenter H; the four centers I, I_1, I_2, I_3 of the inscribed and ex-inscribed circumferences; the centers of symedians W, W_a, W_b, W_c of the four triangles II_1I_2, II_1I_3, II_2I_3, $II_1I_2I_3$, and their triangular inverse N, N_a, N_b, N_c; the midpoints of the altitudes V_a, V_b, V_c, and their triangular inverse U_a, U_b, U_c; furthermore, two other points S_0, S_0 then defined.

To precise the points U_a, U_b, U_c two different elementary constructions are shown: first, as the harmonical conjugate of the diametrally opposite point of any vertex relatively to this vertex and to the intersection of its opposite side and the diameter. Otherwise, U_a, U_b, U_c coincide with the respective intersections of any diameter OA, OB, OC and the corresponding line V_aG, V_bG, V_cG. Some more sophisticated constructions will define the four points N, N_a, N_b, N_c, as the respective homologous
of the circumcenters of the triangles II'I2, III'I3, III'I3, I1'I2'I3 into a particular quadratic transformation, while the two points S0, S are related to the respective homologous R,S of the two points H,0 through this same transformation.

The corresponding tangents to the cubic K at all above points, mean also significative lines of the triangle ABC.

Furthermore, the cubic K holds associate to a second cubic K', so that a dual correspondence between them is stated.

The former cubic K has been referred long time ago, as a seventeen points cubic (see Ref.[1],p.129), without mention of the associate cubic K'. Besides of the inclusion of other thirteen significative points, also incident with K, i.e., W, Wa, Wb, Wc; their inverse N, Na, Nb, Nc; Ua, Ub, Uc; and S0, S , two particular generations and diverse duality properties of both cubics K, K' are herein discussed.

In fact, the existence and first relation between both cubics K, K' are proved by solving the following problem: Let P, P1, P2, P3 be four harmonically associated points relatively to the triangle ABC (Ref.[2],p.447), then the triangle P1P2P3 being circumscribed to the triangle ABC, as shown in the fig. 1:

![Fig. 1](image)

The curve K containing P has to be determined, so that the perpendiculums on the sides of the triangle P1P2P3 at the