SOME MANIFOLDS OF PERIODIC ORBITS IN THE RESTRICTED THREE-BODY PROBLEM

GERARD GÓMEZ
Department de Matemàtiques, E.T.S.E.I.B., Universitat Politècnica de Catalunya, Spain

and

MIQUEL NOGUERA
Departament de Matemàtiques, Facultat d'Informàtica, Universitat Politècnica de Catalunya, Spain

(Received March, 1984; accepted August, 1984)

ABSTRACT. In the present paper we give some numerical results about natural families of periodic orbits, which emanate from limiting orbits around the equilateral equilibrium points of the Restricted Three-Body Problem, when the mass ratio is greater than Routh's critical one.

1. INTRODUCTION

Let \(m_1, m_2 \) be the masses of the primaries normalized in such a way that \(m_1 = \mu, m_2 = 1 - \mu, \mu \in [0, 1] \). Units of length and time are chosen in order to have one unit of distance between the primaries and a mean motion equal to one.

In a synodical system of coordinates \((x, y)\) the two primaries are fixed at \((1 - \mu, 0)\) and \((-\mu, 0)\), respectively. The equations of motion are (see [13])

\[
\begin{align*}
\ddot{x} - 2\dot{y} &= \Omega_x, \\
\ddot{y} + 2\dot{x} &= \Omega_y
\end{align*}
\]

where

\[
\Omega(x, y) = \frac{1}{2} \left(\mu \frac{r_2^2}{r_1} + (1 - \mu) \frac{r_1^2}{r_2} \right) + \frac{\mu}{r_1} + \frac{1 - \mu}{r_2}
\]

and

\[
\begin{align*}
r_1^2 &= (x - 1 + \mu)^2 + y^2, \\
r_2^2 &= (x + \mu)^2 + y^2.
\end{align*}
\]

System (1) has the Jacobian integral

\[
C = 2\Omega(x, y) - (x^2 + y^2).
\]
We consider the equilibrium point L_4, i.e.

$$x = 1/2 - \nu, \quad y = \sqrt{3}/2.$$

In connection with this equilateral point, there exists a critical mass ratio

$$\nu_1 = \frac{1}{2} \left[1 - \frac{1}{9} (69)^{1/2} \right] = 0.03852...$$

which has the following properties (see [13]):

(i) All four characteristic exponents of the equilibrium are distinct if and only if $\nu \neq \nu_1, 1 - \nu_1$.

(ii) For $\nu < \nu_1$ they are of the form $\pm \imath n_s$, where the real numbers n_s and n_z satisfy the inequalities

$$0 < n_z < 1/\sqrt{2} < n_s < 1$$

they are thus of the linearly stable type. Similar for $\nu > 1 - \nu_1$.

(iii) For $1 - \nu_1 > \nu > \nu_1$ the characteristic exponents are of the form $\alpha \pm \imath \beta$, where the real numbers α and β are both different from zero, they are thus of the unstable type.

Lyapunov's theorem (see [11]) establishes that:

(a) For any $\nu \in (0, \nu_1)$, there emanates from L_4 a family $L_4^S(\nu)$ of short period orbits which depends analytically on a real parameter ϵ; when ϵ goes to zero, the periodic orbit vanishes at the point L_4 itself, and its period tends to $2\pi/n_s$.

(b) For any $\nu \in (0, \nu_1)$, except at the critical mass ratios

$$\nu_k = \frac{1}{2} \left[1 - \frac{16k^2}{1 - 27(k^2 + 1)^2} \right]^{1/2}, \quad k = 1, 2, ...$$

there exists another family of periodic orbits around L_4 which depends analytically on a real parameter ϵ; when ϵ goes to zero, the periodic orbit vanishes at the point L_4 itself, but this time, its period tends to $2\pi/n_k$. Hence in view of (2), the family is called the family of long period orbits at L_4, $L_4^L(\nu)$.

For ν slightly greater than ν_1, Brown [1] analyzed the equilibrium configuration up to the third order. His conclusions were the following:

(i) There still exist two families of periodic orbits at L_4 and both families depend analytically on a real parameter ϵ.

(ii) This orbital parameter admits a strictly positive lower bound δ the same for both families. δ is an analytical function of the mass ratio ν; when ϵ goes to zero, both families close to a common periodic orbit, which is called the limiting orbit.

(iii) The limiting orbit is properly periodic, the period being equal to $2\pi/\sqrt{2}$ whatever the mass ratio may be. For $\alpha > 0$, the limiting orbit stays at finite distance from L_4. When ν tends to the critical value ν_1, δ goes to zero and the limiting orbit vanishes at L_4.