AN EXTENDED IDEAL RESONANCE PROBLEM

BORIS GARFINKEL
Yale University Observatory, New Haven, Conn., U.S.A.

(Received 28 May, 1974)

Abstract. An Extended Resonance Problem is defined by the Hamiltonian,
\[F = B(y) + 2\mu^2 A(y)\sin x + \lambda(y)^2 \quad \mu \ll 1, \quad \lambda = O(\mu). \]
It is noted here that the phase-plane trajectories exhibit a double libration, enclosing two centers, for the initial conditions of motion satisfying the inequality
\[1 - |\lambda| < |x| < 1 + |\lambda|, \]
where \(\lambda \) is the usual resonance parameter.

A first order solution for the case of double libration is constructed here by a generalization of the procedure previously used in solving the Ideal Resonance Problem with \(\lambda = 0 \). The solution furnishes a reference orbit for a Perturbed Ideal Problem if a double libration occurs as a result of perturbations.

1. Introduction

An important class of problems in celestial mechanics is reducible to the Perturbed Ideal Resonance Problem. The latter is a problem of one degree of freedom, with the Hamiltonian of the form
\[F = B(y) + 2\mu^2 A(y)\sin 2x + f(x, y), \quad \mu \ll 1, \quad f = o(1), \]
where \(f \) is a Fourier series in the critical argument \(x \). A first-order solution of the unperturbed problem, with \(f \equiv 0 \), is embodied in a series of papers numbered II–VI in the References. Under the assumption of normality (Paper V), the phase-plane diagram of the Ideal Resonance Problem is topologically equivalent to that of a simple pendulum, and is illustrated by the argument of the perigee in the Main Problem of the Artificial Satellite Theory (Paper VII). If \(f \neq 0 \), and if \(f \) contains the sine of an odd multiple of \(x \), the topological picture exhibits the novel feature of a double libration, enclosing two libration centers. In order to provide a reference orbit for (1) that preserves its topological character when double libration occurs in the actual motion, we consider the special case,
\[f = A(y)(2\lambda \sin x + \lambda^2), \]
in which \(f \) is limited to a single trigonometric term, and \(\lambda^2 \) is inserted in order to simplify the analysis. This leads to the formulation of an Extended Problem with the Hamiltonian,
\[F = B(y) + 2\mu^2 A(y)[\sin x + \lambda(y)]^2 \quad \lambda = O(\mu). \]

Celestial Mechanics 12 (1975) 203–214. All Rights Reserved
Copyright © 1975 by D. Reidel Publishing Company, Dordrecht-Holland
That double libration occurs in (3) under certain initial conditions of the motion is shown in Section 2. A first-order solution of (3), including the ignorable coordinates, is then constructed for the case of double libration in Sections 3–9. This is done by a generalization of the procedures previously used in Papers II and VI for solving the Ideal Resonance Problem with $\lambda = 0$.

Another form of an Extended Problem exhibiting double libration was studied by Giacaglia (1970). In celestial mechanics double libration is illustrated by the horse-shoe orbits of the Trojan asteroids.

2. Phase-Plane Diagram

Generalizing the procedure used in Section 2 of Paper II, we replace Equation (15b)-II by

$$A = \pm [1 - \alpha^{-2}(\sin x + \lambda)^2]^{1/2}.$$ \hspace{1cm} (4)

With this new A, the phase-plane trajectories are given to the first order in μ, as in (18)-II, by

$$y = y' + b_1(A - 1),$$ \hspace{1cm} (5)

where α, λ, and b_1 are now functions of the constant y'. In terms of the variables ξ and η defined by

$$\xi = x + \frac{\pi}{2} \text{sgn} \lambda,$$

$$\eta = (y - y' + b_1)\alpha/b_1 = \alpha A,$$ \hspace{1cm} (6)

(5) assumes the form

$$f(\xi, \eta) = \frac{1}{2} [(\cos \xi - |\lambda|)^2 + \eta^2 - \alpha^2],$$ \hspace{1cm} (7)

symmetric with respect to ξ and η-axes. The reader will not confuse $f(\xi, \eta)$ with f of (1) and (2). Furthermore, since only $|\lambda|$ occurs in subsequent analysis, hereafter we shall write λ for $|\lambda|$, for the sake of brevity.

The singular points of the family of curves (7), with α^2 as the family-parameter, are determined from the relations

$$f_\xi = f_\eta = 0.$$ \hspace{1cm} (8)

The results of the analysis are displayed in Table I.

| Table I |
|---|---|---|---|---|
| ξ | η | x | $|\alpha|$ | D | Remarks |
| 0 | 0 | $-\pi/2$ | $1-\lambda$ | $-1+\lambda<0$ | saddle-point (inner) |
| $\pm \pi$ | 0 | $\pi/2$ | $1+\lambda$ | $-1-\lambda<0$ | saddle-point (outer) |
| $\pi/2-\lambda$ | 0 | $-\lambda$ | 0 | $1-\lambda^2>0$ | center |
| $-\pi/2+\lambda$ | 0 | $-\pi+\lambda$ | 0 | $1-\lambda^2>0$ | center |