\textbf{HSP \neq SHPS for metabelian representable l-groups}

N. Ya. Medvedev

\textit{Abstract.} For the standard operators on classes of algebras, \(H \) (homomorphic images), \(S \) (subalgebras) and \(P \) (products) it is shown by counterexamples that \(\text{HSP} \neq \text{SHPS} \) and \(HP \not\preceq \text{SPHS} \) for metabelian representable \(l \)-groups. From these two inequalities it follows that the partially ordered semigroup of operators on metabelian representable \(l \)-groups generated by \(\{H, P, S\} \) is the "standard" 18-element diagram.

Let \(X \) be a class of lattice-ordered groups (\(l \)-groups) such that if \(H \cong G \in X \) then \(H \in X \). We shall write \(H(X) \) for the class of all homomorphic images of \(l \)-groups in \(X \), \(S(X) \) for the class of \(l \)-subgroups of \(l \)-groups in \(X \), and \(P(X) \) for the class of direct products of families of \(l \)-groups in \(X \). In this paper it is shown that \(\text{HSP} \neq \text{SHPS} \) for metabelian representable \(l \)-groups (Theorem 1). This result gives a negative solution of question 28(ii) of [1]. Also it is shown (Theorem 2) that \(HP \not\preceq \text{SPHS} \) for metabelian representable \(l \)-groups and so with the use of results of [5] it follows that the partially ordered semigroup of operators on metabelian representable \(l \)-groups generated by \(\{H, P, S\} \) is the "standard" 18-element algebra.

In this paper \(N \) denotes the set of natural numbers. As usual, \(x \gg y \) means that \(x > y^n \) for every \(n \in N \). All basic facts and definitions about lattice-ordered groups and universal algebra can be found in [2], [3] respectively.

\textbf{1. Preliminaries}

Let \(R \) be the linearly ordered additive group of real numbers and \(R^+ \) be the multiplicative group of positive real numbers. Let \(T_\beta \) be the set

\[T_\beta = \{(r, a) \mid r \in (\beta) \subseteq R^+, a \in A_\beta \subseteq R\} \]

Presented by R. S. Pierce.
Received October 29, 1991; accepted in final form March 24, 1992.
This research was done while the author was a Visiting Professor at the Department of Mathematics and Statistics at Bowling Green State University, Bowling Green, Ohio in 1991. The author thanks the Department for its warm welcome and hospitality.
where \((\beta)\) is the infinite cyclic subgroup of \(R^+\) generated by the positive number \(\beta\), and \(A_\beta\) is any subgroup of \(R\) containing 1 and closed under multiplication by \(\beta\) and \(\beta^{-1}\), with operation \(\cdot\) defined by the rule

\[(r, a) \cdot (r', a') = (rr', r'a + a').\]

It is clear that the set \(T_\beta\) with the operation \(\cdot\) is a group. Now define a linear order on the group \(T_\beta\). Let \(T_\beta \ni (r, a) > e\) iff \(r = \beta p\) and \(p > 0\) or \(r = 1\) and \(a > 0\) in \(R\).

By \(N_k\) we denote the nilpotent group of class \(k\) defined by the following relations:

\[N_k = \text{grp} \langle b, a_1, a_2, \ldots, a_k \mid [a_1, b] = a_2, [a_2, b] = a_3, \ldots, [a_{k-1}, b] = a_k, [a_i, a_j] = e \ (1 \leq i < j \leq k) \rangle\]

with linear order \(N_k \ni b\sigma a_1^{i_1} \cdots a_k^{i_k} > e\) iff \(m > 0\) or \(m = 0\) and \(t_1 = t_2 = \ldots = t_{i-1} = 0\) and \(t_i > 0\) for some \(1 \leq i \leq k\).

Now let us consider the positive real numbers \(\beta_n = n/n + 1\) \((n \in \mathbb{N})\) and \(G = \prod_{\pi \in N} T_\beta_n\), the full direct product of the \(o\)-groups \(T_\beta_n\). It is evident that:

1. The subgroup \(K = \prod_{\pi \in N} A_\beta_n\), where \(A_\beta_n = \{(1, a) \mid a \in A_\beta_n\}\) is an \(l\)-ideal in \(G\).
2. Every element of \(K\) can be represented as an infinite sequence

\[k = ((1, a_1); (1, a_2); \ldots; (1, a_n); \ldots).\]

Let \(G_0\) be the \(l\)-subgroup of \(G\) generated by the element

\[g = ((\beta_1, 0); (\beta_2, 0); \ldots; (\beta_n, 0); \ldots)\]

and the \(l\)-ideal \(K\). Now consider the set

\[H = \{k = ((1, a_1); (1, a_2); \ldots; (1, a_n); \ldots) \in K \mid \lim_{n \to \infty} a_n = 0\}.\]

Lemma 1. \(H\) is an \(l\)-ideal in the \(l\)-group \(G_0\).

The proof is straightforward.

Lemma 2. The factor \(l\)-group \(G_0/H\) contains a copy of the linearly ordered group \(N_k\) for every \(k \in \mathbb{N}\).