Rings with Minimum Condition on Principal Ideals

By CARL FAITH in University Park, Pennsylvania

The purpose of this note is to add to a preliminary investigation by KAPLANSKY [5, § 8] of rings with minimum condition on principal left ideals.

For convenience below, a list of symbols and terminologies is inserted here:

- **MP-ring** = a ring with minimum condition on principal left ideals.
- **M-ring** = a ring containing a minimal left ideal.
- **M-semi-simple ring** = a direct sum of simple M-rings.
- **m-ring** = a ring with minimum condition on left ideals.
- **m-semi-simple ring** = an m-ring which is a direct sum of simple rings.
- **J(A)** = the Jacobson radical of the ring A.
- **L(A)** = the (Baer) lower nil radical of the ring A.
- **(a)_{i}** = the principal left ideal generated by a \(a \in A \).

We recall that a nil radical of a ring A is an ideal M of A satisfying (1) M is nil and (2) \(A - M \) contains no nilpotent ideals \(\neq \{0\} \); and that \(L(A) \) is a nil radical contained in every nil radical of A. Since the Jacobson radical of a ring contains every nil ideal of that ring, and since \(J(A - J(A)) = \{0\} \) [4, p. 5, Theorem 2.2], it is easy to see that \(J(A) \) is a nil radical if and only if \(J(A) \) is nil. The following lemma, used in the proof of our main result (Theorem 1), gives a condition for this.

Lemma. If A is a ring with minimum condition on principal ideals of the form \((a^i)_L \), \(a \in A \), \(i = 1, 2, \ldots \), then \(J(A) \) is a nil radical of A.

Proof. If \(a \in J(A) \), then \((a^N)_L = (a^{N+1})_L \) for suitable \(N \), \(a^N = ba^{N+1} + qa^{N+1} \), where \(q \) is an integer, and \(b \in A \), that is, \(a^N - ca^N = 0 \), where \(c = ba + qa \in J(A) \). Then

\[
a^N = a^N - (c + c' - c')a^N = (a^N - ca^N) - c'(a^N - ca^N) = 0,
\]

where \(c' \) is the quasi-inverse of \(c \). Since \(J(A) \) is nil, \(J(A) \) is nil radical 2).

The lemma shows in an MP-ring A that \(J(A) \supseteq L(A) \). Our main result establishes the reverse inclusion.

Theorem 1. If A is an MP-ring, then \(J(A) = L(A) \).

Proof. We need the following facts noted by KAPLANSKY in the proof of [5, Theorem 8.1]: (I) Every homomorphic image of an MP-ring is an MP-ring; (II) Every MP-

1) By convention, \(A^2 = \{0\} \) is ruled out when \(A \) is simple.
2) Thus, \(J(A) \) is the maximal nil ideal of \(A \). Cf. LEVITZKI [7, p. 226, Theorem 5.13].
ring is an M-ring. LEVITZKI [6, p. 28, Theorem 2] has shown that $L(A)$ coincides with the McCoy radical of A, and, as a consequence [6, Corollary 2], established that $A - L(A)$ is a subdirect sum of prime rings $\{P_x | x \in A\}$. Since A is homomorphic to P_x, $A \sim A - L(A) \sim P_x$, each P_x is an MP-ring by (I), and, hence, an M-ring by (II). By McCoy’s [8, p. 831, Theorem 7] every prime M-ring is primitive. It follows, since $A - L(A)$ is now a subdirect sum of primitive rings, that $J(A - L(A)) = \{0\}$ [4, p. 5, Theorem 2.2]. Since $J(A - L(A)) \supseteq J(A) - L(A)$, evidently $J(A) = L(A)$ as required.

Kaplansky’s [5, p. 74, Theorem 8.1] implies that every MP-ring with $J(A) = \{0\}$ is M-semisimple. In view of Theorem 1, every MP-ring with $L(A) = \{0\}$ is also M-semisimple. This establishes the sufficiency of the next theorem, since the equivalence of (I) with the vanishing of $L(A)$ is well known.

Theorem 2. A is M-semisimple if and only if: (1) A contains no nilpotent ideals $\neq \{0\}$ and (2) A is an MP-ring.

Proof. The necessity remains. Since A is M-semisimple, A is a (group theoretical) direct sum of minimal left ideals $\{L_x | x \in A\}$, since each simple M-ring is (Dieudonné [3, p. 52, Proposition 1]). Thus, each $e \in A$ has a unique representation

$$ (*) \quad e = e_{a_1} + \ldots + e_{a_k}, $$

where $e_{a_j} \in L_{a_j}$, and the L_{a_j}, $j = 1, \ldots, k$, are distinct. Let $(e)L$ be a principal left ideal of A, where $e \in A$ is represented by $(*)$. If $a \in A$, then $ae = \sum_{j=1}^{k} a e_{a_j} \in L_{a_1} + \ldots + L_{a_k}$, so that $(e)L \subseteq L_{a_1} + \ldots + L_{a_k}$. The left ideal $L^* = L_{a_1} + \ldots + L_{a_k}$, being a sum of finitely many minimal left ideals of A, has minimum condition on left ideals (and not just principal left ideals) of A contained in L^*. This shows that every chain

$$ (e)L \supseteq (e_2)L \supseteq (e_3)L \supseteq \ldots $$

is finite, that is, A is an MP-ring. Trivially, any M-semisimple ring A satisfies (1).

Even though the two are logically equivalent, Theorem 2 has an advantage over Kaplansky’s theorem inasmuch as $J(A) = \{0\}$ implies (1) for arbitrary A but not conversely.

Theorem 2 should be compared with the

Wedderburn-Artin structure theorem. A ring A is m-semisimple if and only if (1) and (2') A is an m-ring.

Kaplansky’s theorem achieves two changes of considerable importance:

(a) Simple M-rings replace simple m-rings as basic units of structure.

(b) Arbitrarily many direct summands of the basic units of structure replace only finitely many of these.

3) A more general statement: If M is an A-module, and if M is a sum of finitely many A-submodules each of which has minimum condition on A-submodules, then M has this property. (Cf., e.g., [2, p. 22 Proposition 2 and Corollaire] and [1, p. 14, Corollary 2.2B]).

4) Cf. [1, p. 27, Main Theorem].