Scintigraphic findings on 99mTc-MDP, 99mTc-sestamibi and 99mTc-HMPAO images in Gaucher’s disease

Giuliano Mariani\(^1\), Nicola Molea\(^2\), Luca La Civita\(^3\), Giovanni Porciello\(^3\), Elena Lazzeri\(^2\), Clodoveo Ferri\(^3\)

\(^1\) Nuclear Medicine Service, DIMI, University of Genoa, Genoa, Italy
\(^2\) Regional Center of Nuclear Medicine, University of Pisa, Pisa, Italy
\(^3\) Rheumatology Unit, University of Pisa, Pisa, Italy

Received 1 November and in revised form 24 November 1995

Abstract. Gaucher’s disease is an autosomal recessive lysosomal storage disease characterized by the specific deficiency of glucocerebrosidase that leads to accumulation of insoluble glucocerebroside in the reticuloendothelial system, particularly the bone marrow, liver, spleen and lymph nodes. Direct scintigraphic visualization of lipid deposits in Gaucher’s disease has recently been described, based on the use of the lipid-soluble xenon-133. We report here on the use of the lipophilic cationic complex technetium-99m sestamibi (99mTc-MIBI), employed as an indicator of increased cellular density and metabolic activity, to evaluate Gaucher cell infiltrates in the bone marrow; 99mTc-hexametazime (99mTc-HMPAO) was also employed, as a pure indicator of lipidic infiltration in the bone marrow. A 67-year-old patient with known type 1 Gaucher’s disease presented with a painful left hip and knee and difficulty in gait subsequent to traumatic fracture of the left femoral neck that had required implant of a fixation screw-plaque. Bone scan with 99mTc-methylene diphosphonate revealed reduced uptake at the distal metaphyseal-epiphyseal femoral region. In addition, whole-body maps and spot-view acquisitions of the thighs and legs were recorded at both 30 min and 2.5 h after the injection of 99mTc-MIBI: the scintigraphic pattern clearly showed increased uptake at several sites involved by Gaucher deposits in the bone marrow (both knees, with variable intensity in different areas), matching the bone changes detected by conventional x-ray. The target to non-target ratios slowly decreased with time, from an average value of 2.25 in the early scan to an average value of 2 in the delayed scan. The lipid-soluble agent 99mTc-HMPAO exhibited a superimposable scintigraphic pattern of accumulation at the involved sites, though with lower target to non-target ratios (1.27–1.48). The results obtained in this patient suggest a potential role of 99mTc-MIBI in the scintigraphic evaluation of Gaucher’s lipid deposits in the bone marrow. If the results are confirmed in other patients, this radiopharmaceutical would offer clear advantages over 133Xe because of its wider availability and greater practicality (i.v. administration of 99mTc-MIBI versus inhalation of 133Xe, and use of a single gamma camera instead of two as with 133Xe).

Key words: Gaucher’s disease – Scintigraphy – Technetium-99m methylene diphosphonate – Technetium-99m sestamibi – Technetium-99m hexametazime

Introduction

Specific deficiency of the enzyme glucosylceramidase (glucocerebrosidase) causes Gaucher’s disease, an autosomal recessive lysosome storage disorder characterized by accumulation of the lipid glucocerebroside in cells of the reticuloendothelial system [1]. Type 1, non-neuropathic Gaucher’s disease is the only form compatible with a long survival. Early complications of this disease include dysfunctions due to splenomegaly and bone marrow involvement. Increasing accumulation of Gaucher deposits in bone marrow may lead to various skeletal manifestations such as bone marrow packing, osteonecrosis, osteopenia and osteomyelitis.

Various nuclear medicine procedures can be used to evaluate the presence and extent of Gaucher deposits, or their consequences, in the bone marrow. Lipid infiltration and osteomyelitis have been evaluated by combined technetium-99m methylene diphosphonate (99mTc-MDP) and gallium-67 citrate (review in refs. [2] and [3]), 99mTc-sulphur colloid [4], and indium-111 labelled leucocytes [5], while dynamic scintigraphy with the lipid-soluble xenon-133 has been reported as a tool to specifically evaluate the extent of bone marrow infiltration in patients with Gaucher’s disease [6–8].

We report the case of a patient with adult-onset type 1 Gaucher’s disease, in whom discrepant findings were observed on the bone images on the one hand and on the
Case report

Patient V.E., a 67-year-old man, was diagnosed with type 1 Gaucher’s disease at the age of 36 years, when he underwent emergency splenectomy because of sudden rupture of the spleen. Histopathology revealed lipophagic cell infiltrates typical of Gaucher’s disease, further confirmed in liver biopsy specimens obtained in 1992 when the patient, at the age of 65, underwent partial gastrectomy due to a bleeding gastric ulcer.

In July 1993 the patient suffered from spontaneous, pathological fracture of the left femoral neck, which required surgical implantation of an osteosynthetic fixation screw-plaque (externally to the trochanteric region). The patient continued to suffer from excruciating pain at the left hip with progressive involvement of the left knee and impairment in walking that required crutches. Due to persistence of the above symptoms, in June 1994 the patient was referred to the Rheumatology Unit of the University of Pisa.