Weighted Majority Games Have Many μ-values1

By D. Monderer2

1 Introduction

Measure-based values been introduced by Aumann and Kurz ([1], 1977) and have been discussed by Hart ([3], 1980), Monderer ([4], 1986), and Monderer and Neyman ([5], 1988).

Let μ a non-atomic probability measure. It was proved in [4] that the μ-symmetry axiom is sufficient (together with the linearity and the efficiency axioms) to determine the Aumann and Shapley value on the space $pN A(\mu)$ of smooth non-atomic games which are absolutely continuous with respect to μ. A shorter proof of this fact was given in [5].

In this paper we show that this is not the case when we move away from smooth games. It is proved that there are many μ-values on the space $bv'N A(\mu)$, which is the closed linear space generated by the smooth games, and by all weighted majority games that are continuous at \emptyset and at I (the set of players) with weights which are absolutely continuous with respect to μ.

Since every μ-value on $bv'N A(\mu)$ is continuous with norm 1 and satisfies the projection axiom, and because by [6] $bv'N A(\mu)$ is a subspace of $ASY MP$, we provide an example of a μ-value of norm 1 which is not a partition μ-value, where the notion of a partition μ-value is defined in analogy to the notion of a partition value defined in [7]. It is not known whether there is a value with norm 1 which is not a partition value.

1 This is a revised version of "μ-values on $bv'N A(\mu)$". June 1985.
This is part of the author Ph. D. thesis done in Tel Aviv University under the supervision of Professor Sergiu Hart.

2 Dov Monderer, MEDS, Kellogg Graduate School of Management, Northwestern University, Evanston, IL 60208, USA.
2 \(\mu \)-Values on \(bv'NA(\mu) \)

We shall use the same notations as in [2] and [4] and also the following:

\(bv'NA(\mu) \) will denote the closed linear subspace of \(BV \) generated by all games of the form \(v = f \circ \lambda \), where \(\lambda \in NA^1(\mu) \) (i.e., \(\lambda \) is absolutely continuous with respect to \(\mu \)) and \(f \in bv' \) (i.e., \(f \) is a function of bounded variation on the interval \([0, 1] \), which is continuous at 0 and 1 and satisfies \(f(0) = 0 \)). \(s'NA(\mu) \) will denote the closed linear subspace of \(bv'NA(\mu) \) generated by all games of the form \(v = f \circ \lambda \), where \(\lambda \in NA^1(\mu) \) and \(f \in s' \) (i.e., \(f \) is a singular function in \(bv' \), that is \(f'(x) = 0 \) a.e. w.r.t. the Lebesgue measure). Finally, let \(Q \) be the dense subspace of \(s'NA(\mu) \) consisting of all games of the form \(v = \sum_{i=1}^{n} f_i \circ \lambda_i \), where \(f_i \in s' \) and \(\lambda_i \in NA^1(\mu) \).

Theorem A: There exist continuous \(\mu \)-values with norm 1 on \(bv'NA(\mu) \) which satisfy the projection axiom and are different from the restriction to \(bv'NA \) of the Aumann-Shapley value on \(bv'NA \).

Before proving Theorem A we state one of its corollaries whose proof is given in the introduction.

Corollary 1: There exists a continuous \(\mu \)-value with norm 1 which satisfies the projection axiom and which is not a partition value.

The proof of Theorem A will be given through Lemmas 2–4.

Lemma 2: There exists a function \(\tau : NA^1(\mu) \rightarrow NA^1(\mu) \), different from the identity map, such that:

1. \(\tau \) is \(\mu \)-symmetric. i.e.,
\[
\tau(\theta_\ast \circ \lambda) = \theta_\ast \circ \tau(\lambda)
\]
for every \(\lambda \in NA^1(\mu) \) and every \(\theta \in G(\mu) \),

where \(G(\mu) \) is the group of all automorphisms of the players set \((I, \mathcal{C}) \) which preserve \(\mu \).

2. \(\tau \) satisfies the dummy property. i.e.,
\[
\tau(\lambda) \text{ is absolutely continuous w.r.t. } \lambda
\]
for every \(\lambda \in NA^1(\mu) \).

Proof: Let \(T \) be any measurable subset of \(I \) for which \(0 < \mu(T) < 1 \). Define measures \(\mu_1, \mu_2 \) and \(\mu_0 \) as follows:
\[
\mu_1(S) = \frac{\mu(S \cap T)}{\mu(T)} ; \quad \mu_2(S) = \frac{\mu(S \cap T^c)}{\mu(T^c)} ;
\]