ON THE STRUCTURE OF FINITE ELATION LAGUERRE PLANES

Dedicated to Professor W. Benz on the occasion of his 60th birthday

GÜNTER F. STEINKE

The miquelian Laguerre plane of order \(q \) (\(q \) being a prime power) is obtained as the geometry of non-trivial plane sections of a quadratic cone in the 3-dimensional projective space over \(\text{GF}(q) \). Similarly, an ovoidal Laguerre plane of order \(q \) is obtained as the geometry of non-trivial plane sections of a cone over an oval (not necessarily a conic) in the 3-dimensional projective space over \(\text{GF}(q) \).

In general, a Laguerre plane \(\mathcal{L}=(\mathcal{P},\mathcal{X},\parallel) \) consists of a set of points \(\mathcal{P} \), a set of circles \(\mathcal{X} \) (considered as subsets of \(\mathcal{P} \)) and an equivalence relation \(\parallel \) on \(\mathcal{P} \) (parallelism) such that the following axioms hold (two points \(p,q \in \mathcal{P} \) are called parallel if and only if they are in relation \(p\parallel q \); otherwise they are called non-parallel):

(L1) Any three pairwise non-parallel points can be joined uniquely by a circle passing through these points.

(L2) To every circle \(K \) and any two non-parallel points \(p,q \) where \(p \in K \) and \(q \notin K \) there is precisely one circle \(L \) which is tangential to \(K \) at \(p \) (i.e. \(K \cap L=\{p\} \)) and passes through \(q \).

(L3) Every parallel class intersects each circle in a unique point.

(L4) There are at least two circles and each circle contains at least three points.

If \(\mathcal{P} \) is finite, any two circles have the same number \(n+1 \) of points, and \(n \) is called the order of \(\mathcal{L} \). There are \(n^2+n \) points, \(n^3 \) circles, and \(n+1 \) parallel classes in a

This research was supported by a Feodor Lynen fellowship
Laguerre plane of order n, and every parallel class contains n points.

For every point $p \in P$ there is an internal incidence structure, whose point set consists of all points of P not parallel to p and whose set of lines consists of all circles containing p (without the point p), and all parallel classes not passing through p; this is an affine plane, the derived affine plane \mathcal{A}_p at p. We call the projective closure of \mathcal{A}_p the derived projective plane \mathcal{P}_p at p. If \mathcal{L} has order n then the derived affine plane and derived projective plane also has order n. A circle K not passing through p induces an oval in \mathcal{P}_p by $(K \setminus (p^*)) \cup \omega$, where p^* and ω denote the unique point on K parallel to p (axiom (L3)) and the infinite point of lines that come from parallel classes respectively; in particular, the infinite line of \mathcal{P}_p (with respect to \mathcal{A}_p) is a tangent to this oval at ω.

According to the celebrated theorem of Segre [19] an oval in a finite desarguesian projective plane of odd order is a conic. Chen and Kaerlein proved in [6] by simply counting the conics having a given tangent at a given point that a finite Laguerre plane of odd order having at least one desarguesian derived projective plane is miquelian. In particular, a Laguerre plane of (odd) order < 7 is miquelian. There are precisely two non-isomorphic Laguerre planes of order 8, the miquelian Laguerre plane and the ovoidal plane over a translation oval (not a conic). In [21] it was shown that also a Laguerre plane of order 9 is miquelian. At present there are no non-miquelian Laguerre planes of odd order known, and all known Laguerre planes of even order are ovoidal.

An automorphism of a Laguerre plane \mathcal{L} is a bijection of the point set that maps circles onto circles. All automorphisms of \mathcal{L} form a group Γ with respect to composition, the automorphism group of \mathcal{L}. As every automorphism maps parallel points onto parallel points, the set of all automorphisms that map each point onto a parallel one forms a normal subgroup T of Γ. Since T is precisely the kernel of the action of Γ on the set of parallel classes, we call T the kernel of Γ for brevity. It is well known that T plays an important role in the study of 2-dimensional (topological) Laguerre planes where ovoidal Laguerre planes are characterized by a 4-dimensional kernel T, see [8]. In this note we investigate the kernel T of the automorphism group of a finite Laguerre plane and give a similar characterization of ovoidal planes. More generally, we study such finite Laguerre planes where T is transitive on the set of circles \mathcal{K}.