The theorem on the continuous dependence on a parameter of the solutions of a class of stochastic integral equations with random coefficients containing as summands along with a Lebesgue integral, two-parameter stochastic integrals with respect to a Wiener and a centered Poisson measure is proved.

We consider a stochastic integral equation for vector random field \(\xi(t_1, t_2) \) of two real arguments \((t_1, t_2)\) (with values in \(\mathbb{R}^d \)) having the form

\[
\xi(t) = \psi(t_2) - \xi_0 + \int_{0}^{t} a(s, \xi(s)) \, ds_1 \, ds_2 + \int_{0}^{t} B(s, \xi(s)) \, dw_1 \, ds_2 + \int_{0}^{t} C(s, \xi(s), \theta) \, d\nu(\theta, ds_1, ds_2, d\theta),
\]

where \(\psi(t_2) = \psi(0, t_2), \psi(0) = \psi(0, 0) \), \(\xi(0) = \xi_0 \), \(a(t, x) = a(t, x, t_1, t_2) \), \(B(t, x) = B(t, x, t_1, t_2) \), \(C(t, x, \theta) = C(t, x, \theta, t_1, t_2) \) being random functions defined on \(\Omega \times \mathcal{D}_0 \times \mathbb{R}^d \), \(\Omega \times \mathcal{D}_0 \times \mathbb{R}^d \times \Theta \), \(\mathcal{D}_0 = [0, 1]^2 = [0, 1] \times [0, 1]; \Theta = R \setminus \{0\} \) and assuming values in \(\mathbb{R}^d \), \(L(\mathbb{R}^d), \mathbb{R}^d \) respectively; \(w(t) = w(t_1, t_2), t_1 \geq 0, t_2 \geq 0 \) being a two-parameter Wiener field with values in \(\mathbb{R}^d \); \(\tilde{w}(0, t_1, A) \) being a centered Poisson measure on \(\mathcal{D}_0 \times \Theta \) for which \(M^2(\tilde{w}(0, t_1, A)) = [0, 1] \times (0, t_1] \) is the area of the rectangle \((0, t_1] \times (0, t_2] \); \(\Pi(A) \) being a \(\sigma \)-finite measure on the \(\sigma \)-algebra of Borel sets of the space \(\Theta \). The Wiener field \(w(t) \) and the centered Poisson measure \(\tilde{w}(0, t_1, A) \) are mutually independent.

The first integral in (1) is understood as a Lebesgue integral, the second and third as two-parameter stochastic integrals.

We assume that the Wiener field \(w(t) \) and centered Poisson measure \(\tilde{w}(0, t_1, A) \) the stochastic processes \(\psi(u), \psi(u), \varphi(u), u \in [0, 1] \), and the family of random functions \(a(t, x), B(t, x), C(t, x, \theta) \) are defined on a probability space \(\{\Omega, \mathcal{F}, P\} \) with flow of \(\sigma \)-algebras \(\{\mathcal{F}_t\} \), \(t \in \mathcal{D}_0 \), with which \(w(t) \) and \(\tilde{w}(0, t_1, A) \) are compatible. The random functions \(\psi(t_1), \psi(t_2) \) are subordinate to the flows of \(\sigma \)-algebras \(\{\mathcal{F}_{t_1,0}\}, t_1 \geq 0 \) and \(\{\mathcal{F}_{0,t_2}\}, t_2 \geq 0 \) respectively. Also let \(w(t', t) \) and \(\tilde{w}(t', t_1, A) \) \(t' \leq t \) be independent of the \(\sigma \)-algebra \(\mathcal{F}_t \) and \(\mathcal{F}_{t_1} \) respectively. (We recall that for an arbitrary function \(f(t) \) in its domain of definition for \(t' \leq t \) \(f(t', t_1, t_2) = f(t_1, t_2) + f(t_1, t_2', t_1') + f(t_1', t_2') \).

We denote by \(D^2(\mathcal{D}_0) = D_2(\mathcal{D}_0, \mathbb{R}^d) \) the space of fields without discontinuities of the second kind, by \(\mathcal{B} \) the Borel \(\sigma \)-algebra of sets from \(\mathcal{D}_0 \times \mathbb{R}^d \), and by \(\mathcal{B}^\mathcal{F} \) the Borel \(\sigma \)-algebra of sets from \(\mathcal{D}_0 \times \mathbb{R}^d \times \Theta \).

We introduce the following conditions on the coefficients of (1):

C1. The functions \(a(t, x) \) and \(B(t, x) \) are measurable with respect to \(\mathcal{F}_t \times \mathcal{B} \), and \(C(t, x, \theta) \) with respect to \(\mathcal{F}_t \times \mathcal{B}^\mathcal{F} \), and in the collection \(\omega, t \) they are \(\mathcal{F} \)-measurable where \(\mathcal{F} \) is the predicted \(\sigma \)-algebra with respect to the flow \(\{\mathcal{F}_t\}, t \in \mathcal{D}_0 \).

C2. There is a nonrandom constant \(L_1 \) such that for \(t \in \mathcal{D}_0 \) with probability 1 the following inequality holds:

\[
|a(t, x)|^p + \|B(t, x)\|_p + \left(\int_0^t \|C(t, x, \theta)\|^p \, d\theta\right) \leq L_1 (1 + |x|^p).
\]

C3. There is a nonrandom constant \(L_2 \) such that for \(t \in \mathcal{D}_0, x, y \in \mathbb{R}^d \) with probability 1 one has
\[|a(t, x) - a(t, y)|^2 + |B(t, x) - B(t, y)|^2 + \int_\mathbb{R} |C(t, x, \theta)|^2 \leq L_x |x - y|^2. \]

We consider an equation somewhat more general than (1), namely an equation of the form

\[\xi(t) = \chi(t) + \int_0^t a(s, \xi(s)) \, ds + \int_0^t B(s, \xi(s)) \, \nu(ds_1, ds_2) + \int_0^t C(s, \xi(s), \theta) \, \nu(ds_1, ds_2, d\theta). \]

THEOREM 1. Let us assume that the coefficients \(a(t, x), B(t, x), C(t, x, \theta)\) satisfy conditions C1-C3, the function \(x(t)\) is compatible with the flow \(\{\mathcal{S}_t\}\), \(t \in \mathcal{D}_0\),

\[M \sup_{t \in \mathcal{D}_0} |\chi(t)|^2 \leq \infty \]

and the realizations of \(\chi(t)\) a.s. belong to \(D_\mathcal{D}(\mathcal{D}_0, \mathbb{R}^d)\). Then (2) has a solution \(\xi(t)\) which is compatible with the flow \(\{\mathcal{S}_t\}\), is unique a.s., has no discontinuities of the second kind, and \(M \sup_{t \in \mathcal{D}_0} |\xi(t)|^2 \leq \infty\).

The proof of Theorem 1 goes according to the same scheme and with the help of the same methods as the proof of Theorem 1 of [2] so we omit it. We note only that for the last two integrals in (2) it is easy to get the following estimates:

\[M \left\{ \int_0^t \int_{\mathcal{D}_0} B(s, \xi(s)) \, \nu(ds_1, ds_2) \right\}^2 \leq 16M \left\{ \int_0^t \sup_{s, \mathcal{D}_0} B(s, \xi(s)) \right\}^2 \mu(ds_1, ds_2) \]

\[M \left\{ \int_0^t \int_{\mathcal{D}_0} C(s, \xi(s), \theta) \, \nu(ds_1, ds_2, d\theta) \right\}^2 \leq 16M \left\{ \int_0^t \int_{\mathcal{D}_0} C(s, \xi(s), \theta) \, \nu(ds_1, ds_2, d\theta) \right\}^2 \mu(ds_1, ds_2). \]

Analogously to the one-parameter case (cf. [3], Theorem 2, p. 236) one can show that under identical boundary conditions the solutions of the two different equations agree on the set on which their coefficients agree.

LEMMA 1. Let \(\xi(t)\) be a solution of (2) and \(\tilde{\xi}(t)\) be a solution of the equation

\[\tilde{\xi}(t) = \chi(t) + \int_0^t a(s, \tilde{\xi}(s)) \, ds + \int_0^t B(s, \tilde{\xi}(s)) \, \nu(ds_1, ds_2) + \int_0^t C(s, \tilde{\xi}(s), \theta) \, \nu(ds_1, ds_2, d\theta). \]

If the hypotheses of Theorem 1 hold (i.e., a solution of an equation of the form (2) exists and is unique) and \(a(t, x) = \bar{a}(t, x), B(t, x) = \bar{B}(t, x)\)

\[C(t, x, \theta) = \bar{C}(t, x, \theta) \quad \text{a.s. for} \quad |x| \leq N, \text{ then } \xi(t) = \tilde{\xi}(t) \]

for \(t \in ((0, 0), (\tau, \tau)] \) where \(\tau = \inf \{\tau \leq 1 : \max_{t, \mathcal{D}_0} |\xi(t)| \geq N\}. \)

We give a lemma which is an analog of Gronwall’s lemma (cf., e.g., [1]).

LEMMA 2. If \(z(t)\) is a nonnegative integrable function on \(\mathcal{D}_0\) and

\[z(t) \leq A + B \int_0^t z(s) \, ds_1, ds_2, B, A > 0, \]

then

\[z(t) \leq Ae^{Bt}, \]

COROLLARY 1. Let the hypotheses of Theorem 1 hold but instead of the compatibility of the function \(\chi(t)\) with the flow of \(\sigma\)-algebras \(\{\mathcal{F}_t\}\), \(t \in \mathcal{D}_0\) we require its compatibility with the flow of \(\sigma\)-algebras \(\gamma_t = \gamma_{t, (0)} = \mathcal{F}_{(0, \theta)} \vee 2\mathcal{D}_0, \theta\).

Then there exists a positive nonrandom function \(g(t)\) and a constant \(k\) (depending only on \(L_x\)) such that