AUTOMORPHISMS OF GRAPHS

T. A. Agafonova and V. F. Gor’kovoi

We consider the description of automorphisms of the Berge graph in terms of the graph mapping. Necessary and sufficient conditions for a permutation to be an automorphism are given.

Let \(G = (X, F) \) be a Berge graph [1] in which \(X \) is the vertex set and \(F: X \to X \) is a mapping that associates to each \(x \in X \) the set of vertices reached by arcs from \(x \). Moreover, let \(\rho \) be a partition of the set \(X \) into pairwise nonintersecting classes and \(X/\rho \) the set of classes generated by the partition.

Definition. An automorphism of the graph \(G = (X, F) \) is a bijection \(\varphi: X \to X \) such that for all \(x \in X \) and \(y \in X \) that satisfy the relationship \(\varphi(x) = y \) we have the equality

\[
\varphi(Fx) = F(\varphi(x)).
\]

The automorphism group of the graph \(G \) can be computed given the properties of automorphism cycles of the graph relative to the graph mapping. Each computed automorphism induces a cyclic subgroup of the automorphism group of the graph and by the finiteness of the graph the entire graph group [3] is exhausted by a finite number of such cyclic subgroups [2].

Let \(\rho \) be a partition of the set \(X \) into pairwise nonintersecting classes \(\sigma_k \) such that if we denote by \(\tilde{F} \) the extension of \(F \) to the set of classes \(X/\rho \), then \(\tilde{F}\sigma_k \) is a set of classes from \(X/\rho \).

Fix some order on each class from \(X/\rho \). Order the elements from \(\tilde{F}\sigma_k \) for each \(x \in X \) so that all the elements that have the same index after ordering are contained in the same class from \(X/\rho \).

The set of elements from \(\tilde{F}\sigma_k \) that have the same index \(m \) after ordering is denoted \(\tilde{F}(m)\sigma_k \) or \(F(m)\sigma_k \). By \(p \sigma \) we denote the class \(\sigma \) repeated \(p \) times with some fixed order; the relationship \((F\sigma_k)_m \approx p\sigma(m); \sigma_k, \sigma \in X/\rho; p \geq 0 \) implies that the right-hand side is a collection of \(p \) copies of the set \(\sigma \) ordered in the same way, and the order on \(\sigma \) is identical with the original order on this class up to a cyclic shift.

THEOREM. The partition \(\rho \) of the set \(X \) of the graph \(G = (X, F) \) induces an automorphism \(g \) if and only if for any class \(\sigma_k \in \rho \) and any \(m > 0 \) there exists \(\sigma_{k(m)} \in \rho \) such that

\[
(F\sigma_k)_m \approx p\sigma_{k(m)} \quad \text{for} \quad |\sigma_k| > 1;
\]

\[
F\sigma_k = \{\sigma_k\}; \quad \text{for} \quad |\sigma_k| = 1.
\]

Proof. Necessity. Let \(\rho \) be a partition of the set \(X \) into classes \(\{\sigma_k\} \) which are ordered cyclically and induce the automorphism \(g \), and \(x \in \sigma_k \), \(y \in \sigma_k \): \(|\sigma_k| \leq |\sigma_k| \leq |\sigma_k| > 1 \) such that \(F(m)x = y \).

For an arbitrary but fixed \(m > 0 \), partition the set \(\sigma_k \) into classes \(\sigma_{k1} \), assigning to the same class the elements \(z \in \sigma_{k1} \) and \(z' \in \sigma_{k1} \) that satisfy the relationships \(F(m)z = F(m)z' \). Clearly, if \(|\sigma_k| = l \), then \(\bigcup_{i=1}^{l} \sigma_{ki} = \sigma_{k1} \).

Since \(g \) is an automorphism, we have

\[
(\forall x_i \in \sigma_{k1})(\forall y_j \in \sigma_{k1})(\exists r_i > 0)(g^{r_i}x_i = x_j \land\land g^{r_i}(F(m)x_i) = F(m)(g^{r_i}(x_i))).
\]
We will show that to any pair σ_{k_i} and σ_{k_j} from σ_{k_1} we can associate one r_{ij}. Let $x_i, \bar{x}_i \in \sigma_{k_i}; x_j, \bar{x}_j \in \sigma_{k_j}$, and let r and R be such that $g^r x_i = x_j; g^R \bar{x}_i = \bar{x}_j$. Then, noting that g^r and g^R are automorphisms, we have

$$g^r(F(m x_i)) = F(m g^r(x_i)) = F(m x_j)$$

$$g^R(F(m \bar{x}_i)) = F(m g^R(\bar{x}_i)) = F(m \bar{x}_j).$$

But since $x_i, \bar{x}_i \in \sigma_{k_i}, x_j, \bar{x}_j \in \sigma_{k_j}$, we have $F(m x_i) = F(m \bar{x}_i); F(m x_j) = F(m \bar{x}_j)$, and thus $r \equiv R \pmod{\mu}$, where $\mu > 0$ is such that $g^{\mu+1} = g$.

Thus, for any pair of classes σ_{k_i} and σ_{k_j} there exists r_{ij} such that $g^{r_{ij}}(\sigma_{k_i}) = \sigma_{k_j}$. If $g^{r_{ij}}$ is a bijection, then $|\sigma_{k_i}| = |\sigma_{k_j}|$, and thus there exists $p > 0$ such that $F(m)^p \sigma_{k_1} = p \sigma_{k_2}$.

We will show that all the copies σ_{k_2} in $F(m)\sigma_{k_1}$ are ordered in the same way and that the order on them is identical with the initial order up to a cyclic shift.

The proof is by contradiction.

Let $|\sigma_{k_1}| = n; |\sigma_{k_2}| = l; n = pl$. Consider $x, \bar{x} \in \sigma_{k_1}$ such that $x \neq \bar{x}; F(m)x = F(m)\bar{x}; F(m)\bar{x} \in \sigma_{k_2}$. Here $\sigma_{k_2} = \sigma_{k_2}$, and the orders on these classes as subsets of $F(m)\sigma_{k_1}$ are different.

Let $F(m)x$ have the index i_1 in σ_{k_2} and $F(m)\bar{x}$ the index i_2. Then $r = s l + i_2 - i_1$ is such that $g^r x = \bar{x}$. Since g^r is an automorphism, we have

$$F(m)\bar{x} = F(m g^r(x)) = g^r(F(m x)) = g^{r_{ij}}(F(m x)) \neq F(m x),$$

because $|i_2 - i_1| < l$, which contradicts the choice of x and \bar{x}.

Thus,

$$F(x) = g^{r_{ij}}(x) = g^{r_{ij}}(F(m x)) = g^{r_{ij}}(F(m x)) \neq F(m x).$$

Since x is arbitrary, relationship (4), and thus also (2), are satisfied for all m. By arbitrary choice of the class σ_{k_1} from the partition ρ, relationship (2) holds for all σ_k such that $|\sigma_k| > 1$.

Let $|\sigma_k| = 1$ and $\sigma_k = \{x\}$. Since $g(x) = x$ and g is an automorphism, we have

$$g(Fx) = F(g(x)) = Fx.$$

But for every $\sigma_{k_i} \in X/\rho$ we have $g(\sigma_{k_i}) = \sigma_{k_i}$, and therefore any nonempty trace of the class σ_{k_i} on $F \bar{x}$ is identical with the entire class σ_{k_i}.

Thus, $F \sigma_{k_i} = \{\sigma_{k_i}\}$ for $|\sigma_k| = 1$. Q.E.D.

Sufficiency. Let the partition ρ be such that (2) holds for all m and any σ_k from ρ.

We will show that the partition ρ induces an automorphism g. Extend the definition of the orders on the classes σ_k to cyclic orders. As the permutation g take the collection of cycles $\{\sigma_k\}$. For each class σ_k from the partition ρ we obviously have $g(\sigma_k) = \sigma_k$. And since $(F \sigma_k)_m = \rho \sigma_{k_i}$ for every $m > 0$, we have

$$g((F \sigma_k)_m) = \rho(g(\sigma_{k_i}^s)), $$

where s is a cyclic shift by a certain number of digits. Since g and s are bijections, we have $g(\sigma_{k_i}^s) = (g(\sigma_{k_i}))^s$.

Consider the elements $x, x' \in \sigma_k, y, y' \in \sigma_k$, such that $g(x) = x'; F(m)x = y; F(m)x' = y'$.

Assume that the permutation g associates to the element $y \in \sigma_{k_i}$ the element $y' \in \sigma_{k_i}$. Then noting that g and s are permutations and using (2), we see that the same element y' is associated to the element $y \in \sigma_{k_1}; \sigma_{k_1} \in F \sigma_{k_1}$. Now, let x from σ_k have the index α_1 and x' the index α_2. Similarly, $y \in \sigma_{k_1}$ has the index β_1 and y' the index β_2. If $|\sigma_k| = n$: $|\sigma_{k_1}| = l; n = pl$, then $r = s l + \beta_2 - \beta_1 = \alpha_2 - \alpha_1$ is the number of one-digit shifts q needed to obtain x' from x.

Clearly, $g(x) = g^q(x) = x'$. On one hand, $F(m)(g^q(x)) = F(m)(x') = y', g(y) = y'$, and on the other hand for y from σ_{k_1} by (2)

$$g(y) = g^r(y) = g^{\beta_2 - \beta_1}(y) = y'. $$

3342