A Characterization of Chebyshev Curves in \mathbb{R}^n

B. UHRIN

Computer and Automation Institute, Hungarian Academy of Sciences, 1518 Budapest, Pf. 63. Hungary. e-mail: uhrin@sztaki.hu

(Received: 11 April 1994)

Abstract. Given a totally ordered set T containing at least $n+1$ elements (say a subset of \mathbb{R}^i), the graph of the function $a: T \rightarrow \mathbb{R}^n$ is called a Chebyshev curve (in \mathbb{R}^n) if the determinant of the matrix $(a(t_1), a(t_2), \ldots, a(t_n))$ is either positive whenever $t_1 < t_2 < \cdots < t_n$ or negative whenever $t_1 < t_2 < \cdots < t_n$. For finite T a characterization of these curves (sequences) has been given by the author.

In this paper the result is extended to non-finite T. The characterization proved here is an improved (reformulated) version of that given by the author for infinite T.

1. Introduction

For motivation and 'historical' background of the matter, see [1], [2]. For more recent developments, see Section 3.

Let T be a totally ordered set, i.e. a set possessing an order '<' such that for any two different elements $t_1, t_2 \in T$ we have either $t_1 < t_2$ or $t_2 < t_1$. (We shall use '<' also for real numbers; the meaning will be clear from the context.)

T is assumed to have at least $n+1$ elements, $n \geq 2$. The function $a: T \rightarrow \mathbb{R}^n$, more precisely its graph $\{a(t)\}_{t \in T}$, is called a Chebyshev (C)-curve in \mathbb{R}^n if

$$\text{sgn}(\det(a(t_1), \ldots, a(t_n))) = \text{const} \neq 0$$

for all $t_1 < t_2 < \cdots < t_n$, where $\det(\cdot)$ means the determinant of the matrix and $\text{sgn}(\cdot)$ is the signum function ($\text{sgn}(\alpha) = 0$ if $\alpha = 0$, $= 1$ if $\alpha > 0$ and $= -1$ if $\alpha < 0$).

The typical classical example for a Chebyshev curve is the generalized moment curve:

$$a(t) := (t^\alpha, t^\beta, \ldots, t^\nu), t > 0, \alpha < \beta < \cdots < \nu.$$ \hfill (1.2)

To prove that (1.2) satisfies (1.1) one has only to observe that the underlying matrix is the generalized Van der Monde matrix ([3]).

Using functions $e^{-\alpha t^2}$ or $1/t$ or $1/\text{ch}(t)$ (instead of t^α), one can build three more matrices behaving similarly, see, e.g., [3, pp. 88–95], so one get three further examples of C-curves.
In fact the curve (1.2) and also those with $e^{-\sigma t^2}$, $1/t$, $1/\text{ch}(t)$, satisfy a more strict condition: not only (1.1) is valid with $\text{const} = +1$ but also all subdeterminants of all orders are positive ([3, pp. 88–95]). Matrices of such type are called totally positive ([3], [4], [5]). Let us call the curves $a: T \to R^n$ such that the matrices $(a(t_1), \ldots, a(t_n))$ are either for all $t_1 < \cdots < t_n$ totally positive or for all $t_1 < \cdots < t_n$ totally negative, totally monotone (tm)-curves in R^n.

So any tm-curve is a C-curve, but in general the converse is not true.

The curve (1.2) with $\alpha = 1, \beta = 2, \ldots, \nu = n$, (the moment curve of Carathéodory) is not only the classical example for a tm-curve but it served as the ‘paradigm’ for a so-called n-order curve (see, e.g., [6]).

Following [6], we call the curve $a: T \to R^n$ an n-order curve in R^n if

$$\text{sgn} \left(\det \left[\begin{array}{c} 1 \\ a(t_1) \\ a(t_2) \\ \ldots \\ a(t_{n+1}) \end{array} \right] \right) = \text{const} \neq 0$$

(1.3)

for all $t_1 < t_2 < \cdots < t_{n+1}$.

While the relation between tm-curves and C-curves is clear, that between C-curves and n-order curves is not so clear (notice principal differences between (1.1) and (1.3)).

Looking at the function $a: T \to R^n$ ‘row-wise’, i.e. as (an ordered) collection of n functions $a_i: T \to R^1$, $i = 1, 2, \ldots, n$, where a_i are the coordinates of $a \in R^n$, C-curves are nothing else but Chebyshev systems.

For basic facts concerning these systems see [3], [4], [5], [7]. For us the following well-known statement concerning Chebyshev systems is interesting (formulated in our terminology of C-curves)

Proposition 1.1 (e.g. [4]). If $a: T \to R^n$ is a C-curve, then, denoting by $\langle x, y \rangle$ the usual scalar product of $x, y \in R^n$ and putting

$$\langle a, x \rangle(t) := \langle a(t), x \rangle, \quad t \in T, \quad x \in R^n,$$

(1.4)

for any non-zero $x \in R^n$ we have

$$S^+ (\langle a, x \rangle) \leq n - 1,$$

(1.5)

where $S^+(f)$ is the maximum number of sign changes of the function $f: T \to R^1$ on T.

Recall that for any $f: T \to R^1$

$$S^+(f) := \sup S^+(f(t_1), f(t_2), \ldots, f(t_p)),$$

(1.6)

where $S^+(\alpha_1, \ldots, \alpha_p)$, $\alpha_i \in R^1$, means the maximum number of sign changes in the sequence of signs $\text{sgn}(\alpha_1), \text{sgn}(\alpha_2), \ldots, \text{sgn}(\alpha_p)$ and the supremum is taken