ABSTRACT. For convex bodies D in \mathbb{R}^n it is shown that the isoperimetric deficit of D is minorized by a constant times the square of the barycentric asymmetry $\beta(D)$ of D. Here $\beta(D)$ is defined as the volume of $D \setminus B_D$ divided by the volume of D, where B_D denotes the ball centred at the barycentre of D and having the same volume as D.

Consider the isoperimetric deficit

$$\Delta(D) = \frac{S(D)}{S(B_D)} - 1$$

of a bounded measurable set $D \subset \mathbb{R}^n$ whose boundary ∂D has a finite $(n-1)$-dimensional surface area $S(D)$. Here B_D denotes a ball in \mathbb{R}^n with the same volume as D: $V(B_D) = V(D)$.

In a previous paper [1] the isoperimetric deficit $\Delta(D)$ of convex domains D in \mathbb{R}^n was estimated from below in terms of the uniform spherical deviation $d(D)$ of D. Assuming, as we may, that the volume of D equals that of the unit ball in \mathbb{R}^n, $d(D)$ is simply the Hausdorff distance between D and the ball of radius 1 centred at the barycentre of D. The main result in [1] then asserts that there exist constants $k_n, \eta_n > 0$ depending only on n such that

$$\Delta(D) \geq \begin{cases} k_2 d(D)^2, & n = 2 \\ k_3 d(D)^2 / \log(1/d(D)), & n = 3 \\ k_4 d(D)^{(n+1)/2}, & n \geq 4 \end{cases}$$

for any convex body D in \mathbb{R}^n such that $\Delta(D) < \eta_n$. This estimate is sharp with regard to the order of magnitude of the function of $d(D)$ on the right.

A qualitative consequence of (1) is the following stability property connected with the isoperimetric theorem: If the isoperimetric deficit $\Delta(D)$ of a convex body D is small enough then the uniform spherical deviation $d(D)$ is necessarily as small as we please.

In the planar case $n=2$ the estimate (1) is a variant of Bonnesen's inequality. This inequality extends to non-convex, simply connected domains, see [2], but not to disconnected domains, where also the above

stability property breaks down (take for D the union of two discs of very different radii and with centres far apart). And for $n \geq 3$ stability breaks down for non-convex domains D, even homeomorphic to a ball (take for D a ball equipped with a long, thin 'spike').

In an effort to obtain a kind of stability even for non-convex sets, L. E. Fraenkel has proposed to replace the above uniform spherical deviation $d(D)$ by the following average measure of non-sphericity of D, called the asymmetry of D:

$$
\alpha(D) = \inf_{x \in \mathbb{R}^n} \frac{V(D \setminus B(x, v))}{V(D)} = \inf_{x \in \mathbb{R}^n} \frac{V(B(x, v) \setminus D)}{V(D)},
$$

where v denotes the volume radius of D (=the radius of a ball with the same volume as V), and $B(x, v)$ denotes the ball of radius v centred at x. Fraenkel conjectured the inequality

$$
\Delta(D) \geq c_n \alpha(D)^2
$$

with $c_n > 0$ depending only on the dimension n.

In dimension $n = 2$ the inequality (3) holds with $c_2 = 0.08$, as shown in [4]. For $n \geq 3$ the problem is open in its general form, but it was shown by Hall [3] that we always have $\Delta(D) \geq c_n \alpha(D)^4$, and so there is indeed stability when the non-sphericity of D is measured by the asymmetry $\alpha(D)$. It was further shown in [3] that (3) holds as it stands for bodies of revolution D (suitably understood), and it was noted that the exponent 2 on the right of (3) is sharp (take for D a solid ellipsoid of revolution close to a ball in \mathbb{R}^n). Here and in the sequel the value of c_n may vary from occurrence to occurrence.

In the present note we establish (3) for convex bodies D in \mathbb{R}^n, $n \geq 2$. Actually we even replace $\alpha(D)$ in (3) by a generally larger quantity $\beta(D)$ which we call the barycentric asymmetry of D because it is defined by fixing the centre x of the ball $B(x, v)$ in (2) as the barycentre of D, cf. (5) below. This sharpening, however, is confined to the convex case, see Remark 1 below. Our proof makes extensive use of the proof of (1) given in [1].

None of the estimates (1) or (3) for convex domains D in \mathbb{R}^n can be derived from the other by inserting mutual estimates of $d(D)$ and $\alpha(D)$ (or $\beta(D)$), although such estimates are available in a sharp form, cf. Lemma and Remark 2 below.

NOTATION. The notation will be as in [1, §1, pp. 622–623]. In particular:

- D = a convex body in \mathbb{R}^n, $n \geq 2$.
- $V = V(D)$ = the volume of D (n-dimensional Lebesgue measure).
- $S = S(D)$ = the surface area of D (i.e. of ∂D).