FACTORORIZATION INTO \(k \)-DIMENSIONAL LINEAR BIJECTIONS

Abstract. Let \(V \) be a vector space, \(k \in \mathbb{N} \) with \(k \leq \dim V \) and \(S_k := \{ \phi \in \text{GL}(V) | \dim V(\phi - 1) = k \} \). Then \(S_k \) generates \(\text{GL}_f(V) := \{ \pi \in \text{GL}(V) | \dim V(\pi - 1) \text{ is finite-dimensional} \} \) (with the exception that \(\dim V = 2 = k \) and the field is GF2). We study the length problem in \(\text{GL}_f(V) \) with \(S_k \) as set of generators.

1. **Introduction**

Let \(V \) be a right vector space of arbitrary dimension \(n \) over a skew-field \(K \). Call \(\pi \) a simple mapping if \(\pi \in \text{GL}(V) \) and \(\dim B(\pi) = 1 \), where \(B(\pi) = V(\pi - 1) \). Then \(\pi \) induces on the projective space \(PV \) a perspective collineation with center \(V(\pi - 1) \) and axis kernel \(V(\pi - 1) \). Every perspective collineation of \(PV \) is induced by a simple mapping.

Let \(S \) be a set of generators for a group \(G \) such that \(a^{-1} \in S \) for every \(a \in S \). Then every \(\pi \in G \) is a product of elements of \(S \), and the minimal number of factors occurring in such a product is called the length of \(\pi \), notation \(l(\pi) \). If \(G = \text{GL}_f(V) := \{ \pi \in \text{GL}(V) | \dim B(\pi) \text{ is finite} \} \) and \(S \) is the set of simple mappings then \(S \) generates \(G \) and \(l(\pi) = \dim B(\pi) \) for every \(\pi \in G \). Furthermore, one can often obtain a representation \(\pi = \sigma_1 \cdots \sigma_{l(\pi)} \) where \(\det \sigma_i = \lambda_i \) for given values \(\lambda_i \) (cf. [1], [2]).

For \(k \in \mathbb{N} \) with \(k \leq \dim V \) let \(S_k := \{ \sigma \in \text{GL}(V) | \dim B(\sigma) = k \} \) denote the set of \(k \)-dimensional mappings. Observe that \(S_1 \) is the set of simple mappings. For \(\pi \in \text{GL}_f(V) \setminus \{ 1 \} \) let \(l(\pi) := \min \{ s \in \mathbb{N} | \pi = \varphi_1 \cdots \varphi_s, \varphi_i \in S_k \} \cup \{ \infty \} \) denote the \(k \)-length of \(\pi \). We will study the length problem with \(S_k \) as set of generators. For \(\pi \in \text{GL}_f(V) \setminus \{ 1 \} \) and \(m := \dim B(\pi) \) we prove that \(l(\pi) = 2 \) if \(m < k \) and \(l(\pi) = \min \{ r \in \mathbb{N} | m \leq rk \} \) if \(k \leq m \) (with the only exception that \(K = \text{GF2} \) and \(\dim V = 2 = k \)); cf. 4.4. Furthermore, if \(k \) does not divide \(m \) or if \(\pi \) (cf. 2.8) is not a homothety then we can prescribe the determinants of all but one of the factors in a product \(\pi = \varphi_1 \cdots \varphi_i \), where \(\varphi_i \in S_k \) and \(l := l(\pi) \); cf. supplement to 4.4.

In order to make the article self-contained we collect basic tools in Section 2. We include Section 3 on products of simple mappings though the results are known ([1] and [2]).
2. BASIC FACTS

For \(\pi \in \text{End}(V) \) let \(B(\pi) := V(\pi - 1) \) and \(F(\pi) := \ker(\pi - 1) \). Then \(B(\pi) \cong V/F(\pi) \), hence \(\dim B(\pi) = \text{codim} F(\pi) \). Let \(\text{End}_f(V) := \{ \pi \in \text{End}(V) \mid \dim B(\pi) \in \mathbb{N}_0 \} \) (where \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \)).

2.1. REMARK. Let \(\pi \in \text{End}(V) \) and \(U \subseteq V \). If \(B(\pi) \subset U \) or \(U \subset F(\pi) \) then \(U \pi \subset U \).

2.2. REMARK. Let \(\pi \in \text{GL}(V) \). Then \(B(\pi) = B(\pi^{-1}) \) and \(F(\pi) = F(\pi^{-1}) \).

2.3. LEMMA. Let \(\alpha, \beta \in \text{End}(V) \). Then \(B(\alpha \beta) + B(\beta) = B(\alpha) + B(\beta) \). In particular, \(B(\alpha \beta) \subset B(\alpha) + B(\beta) \). Let \(\alpha, \beta \in \text{End}_f(V) \). Then \(\dim B(\alpha \beta) = \dim B(\alpha) + \dim B(\beta) \) if and only if \(B(\alpha \beta) = B(\alpha) \oplus B(\beta) \).

2.4. LEMMA. Let \(\alpha, \beta \in \text{End}(V) \). If \(B(\alpha) \cap B(\beta) = \emptyset \) then \(F(\alpha \beta) = F(\alpha) \cap F(\beta) \). Furthermore,

\[
\dim F(\alpha \beta) \leq \dim (F(\alpha) \cap F(\beta)) + \dim (B(\alpha) \cap B(\beta)).
\]

2.5. LEMMA. (a) Let \(\alpha, \beta \in \text{GL}(V) \) such that \(V = F(\alpha) + F(\beta) \). Then \(B(\alpha \beta) = B(\alpha) + B(\beta) \).

(b) Let \(\alpha, \beta \in \text{GL}_f(V) \) and \(B(\alpha) \cap B(\beta) = \emptyset \). Then

\[
B(\alpha \beta) = B(\alpha) \oplus B(\beta) \iff F(\alpha) + F(\beta) = V.
\]

2.6. SIMPLE MAPPINGS. Call \(\sigma \) simple if \(\sigma \in \text{GL}(V) \) and \(\dim B(\sigma) = 1 \). Let \(r \in V \) and \(v \in V^* \) (dual space). Then \(\sigma := \sigma(r, v) : V \rightarrow V, v \mapsto v + r(vv) \) is linear; \(\sigma \) is simple if and only if \(r \neq 0 \) and \(v \neq 0 \) and \(rv \neq -1 \). Suppose that \(\sigma \) is simple. We have \(B(\sigma) = \langle r \rangle \) and \(F(\sigma) = \ker(v) \). Clearly, \(B(\sigma) \subset F(\sigma) \) if and only if \(rv = 0 \). Then \(\sigma \) is called a transvection. Every simple mapping in \(\text{GL}(V) \) has the form \(\sigma(r, v) \) with \(r \neq 0 \) and \(v \neq 0 \) and \(rv \neq -1 \).

If \(\sigma(r, v) \) and \(\sigma(s, \omega) \) are simple mappings then \(\sigma(r, v) = \sigma(s, \omega) \) if and only if \(s = rv \lambda \) and \(\omega = \lambda^{-1}v \) for some \(\lambda \in K^* \). This yields in particular: \(rv = \lambda(s\omega)\lambda^{-1} \). For \(\mu \in K^* \) let \(\zeta \mu \) denote the conjugacy class of \(\mu \) in \(K^* \). Due to the previous observation one can assign to every simple mapping \(\sigma = \sigma(r, v) \) the conjugacy class \((1 + rv) \) which will be called the type of \(\sigma \). If \(\sigma \) is simple and \(\zeta \mu = \text{type}(\sigma) \) then \(\sigma = \sigma(s, \omega) \) for some \(s \in V \) and \(\omega \in V^* \) such that \(1 + s\omega = \mu \). If \(K \) is commutative then the type of \(\sigma \) is \(\det(\sigma) \).

2.7. LEMMA. Given \(\alpha \in \text{GL}(V) \) and \(U \subseteq V \) such that \(B(\alpha) \subset U \) and \(B(\alpha) \neq U \). Let \(\lambda \in K^* \). If \(\alpha = 1 \) and \(\lambda = 1 \) assume that \(\dim V \geq 2 \). Then \(U = B(\alpha \beta) = B(\alpha) \oplus B(\beta) \) for some \(\beta \in \text{GL}(V) \). If \(K \) is commutative then we can additionally achieve that \(\det(\beta) = \lambda \).

Proof. We may assume that \(\dim U = \dim B(\alpha) + 1 \).

Case \(\lambda = 1 \). Choose some \(r \in U \setminus B(\alpha) \) with \(F(\alpha) \neq \langle r \rangle \) [this is possible since