MAXIMALITY OF $\text{PSp}_6(q)$ ACTING ON THREE-DIMENSIONAL COMPLETELY ISOTROPIC SUBSPACES

V. V. Zhdan-Pushkin and V. A. Ustimenko

UDC 512.542.7

Let G be a finite simple Lie group, let M be a class of conjugate maximal parabolic subgroups of G, and let (G, M) be a substitution group that corresponds to the action of G with the aid of conjugates on M. It is conjectured [1] that the normalizer of a group G is usually a maximal subgroup in the symmetric group $S(M)$ in the alternating group $A(M)$. The first result supporting this conjecture was a theorem on the maximality of $\text{PGL}_n(q)$, $n \geq 3$, acting on straight lines [2]. The proof of the subsequent results [3, 4] is based on this theorem for $n = 3$. Further advances in this respect are related to a study of groups of small rank.

Theorem. Let $(\text{PSp}_6(q), N_3)$ be a substitution group corresponding to the natural action of $\text{PSp}_6(q)$, $q > 3$, $q \neq 2^h$ on a set N_3 of three-dimensional completely isotropic subspaces in F_q^6. Then any substitution group on N_3 that contains $\text{PSp}_6(q)$ will either be contained in $(\text{PSp}_6(q), N_3)$, or it will contain the alternating group $A(N_3)$.

This theorem remains valid also for $q = 3$. The proof known to the authors differs from the proof given below.

1. Let (G, W) be a substitution group. A stabilizer of the set $M \subseteq W$ is defined by the subgroup $G_{(M)} = \{g \in G \mid M^g = M\}$. If M is a transitivity block of G, i.e., $G_{(M)} = G$, then there exists a natural homomorphism $\lambda : G \rightarrow S(M)$ of the group G into a symmetric group of the set M that is called the action of G on the set M. $\text{Ker} \lambda = G_{(M)} = \{g \in G \mid x^g = x, x \in M\}$ is the fixing element of M. If λ is injective, i.e., $\text{Ker} \lambda = G_{(M)} = 1$, then the action is said to be exact. We shall say that the action λ is similar to the substitution group $(G/\text{Ker} \lambda, M)$.

A group (G, W) is said to be regular if G is transitive and the stabilizer of the point Gx is equal to the unit subgroup. In the same way we shall say that an action is regular if it is similar to a regular substitution group. An Abelian group acts regularly on any of its orbits. The centralizer of a regular substitution group (G, W) in $S(W)$ is also regular.

The group G acts naturally on the set $\hat{W}^k = \{(a_1, ..., a_k) \mid a_i \in W, a_i \neq a_j, i \neq j\}$. The elements of \hat{W}^k are called k-points. The transitivity blocks and the orbits of (G, \hat{W}^k) are called invariant k-relations and invariant k-orbits of (G, W). A relation θ is said to be symmetrical if together with each k-point $(a_1, ..., a_k)$ it contains all the k-points obtained from $(a_1, ..., a_k)$ by permutation of coordinates. Inclusion-minimal symmetrical invariant k-relations are called symmetrized k-orbits. Let ϕ be a $(k + 1)$-nary invariant relation, and let O be a k-orbit of the group G. The number $\phi(a_1, ..., a_k, y) = |\{(a_1, ..., a_k, y) \in O\}|$ does not depend on the selection of a k-point $(a_1, ..., a_k) \in O$ and it is called the coefficient of projection of ϕ on the k-orbit O.

2. Let us study some properties of the group $\text{PSp}_6(q)$. We shall adopt the notation used in [5]. Let F_q be a field of q elements, $q = p^h$, $p > 2$. We shall consider a six-dimensional vector space E over F_q and an f-alternating bilinear form on E. By N_3 we shall denote the set of maximal (three-dimensional) completely isotropic subspaces of E. The substitution group $(\text{PSp}_6(q), N_3)$ is primitive and it has the following binary orbits: $\Gamma_i = \{(V, W) \in N_3^2 \mid \dim V \cap W = 3 - i, i = 1, 2, 3, \Gamma_i \}$ is called a neighbor relation.

0041-5995/84/3606-0521$08.50 © 1985 Plenum Publishing Corporation
In E let us select a symplectic basis $\{n_1, n_2, n_3, m_1, m_2, m_3\}$. The group $Sp_6(q)$ can be regarded as a matrix group $\{A \in GL_6(q) | ATA^t = T\}$, where $T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, and I is a unit (3×3)-matrix. The elements of $PSp_6(q)$ will be represented by the matrix of the corresponding linear transformation belonging to $Sp_6(q)$. We can assign an element of N_3 by indicating the coordinates of its basis.

Let us find the 3-orbits of the group $(PSp_6(q), N_3)$. The relations $\Delta(k, l, m, n) = \{X, Y, Z \in (N_3) | \dim X \cap Y \cap Z = k, \dim X \cap Y = k + \ell, \dim X \cap Z = k + m, \dim Y \cap Z = k + n\}$ are invariants. By $\Delta(k, l, m, n)$ we denote a symmetrization of the relation $\Delta(k, l, m, n)$: $\Delta(k, l, m, n) = \Delta(k, l, m, n) \circ \Delta(k, l, m, n) \cup \Delta(k, l, m, n)$.

Lemma 1. There exist 15 symmetrized 3-orbits $\Phi_1, \ldots, \Phi_{15}$ of the group $(PSp_6(q), N_3): D_1 = \Delta(0, 2, 0, 0), \Phi_2 \cup \Phi_3 = \Delta(0, 1, 1, 0), \Phi_4 \cup \Phi_5 = \Delta(0, 1, 0, 0), \Phi_6 \cup \Phi_7 = \Delta(0, 0, 0, 0), \Phi_8 = \Delta(0, 0, 0, 0), \Phi_9 = \Delta(0, 1, 0, 0), \Phi_{10} = \Delta(1, 0, 0, 0), \Phi_{11} \cup \Phi_{12} = \Delta(1, 1, 1, 0), \Phi_{13} = \Delta(1, 1, 0, 0), \Phi_{14} = \Delta(2, 0, 0, 0), \Phi_{15} = \Delta(2, 0, 0, 0)$. The nonzero projection coefficients $\alpha_i = q$ can be calculated by the formulas $\alpha_1 = 2q^4, \alpha_2 = 2q^4, \alpha_3 = q^2(q^2 - 1)/2, \alpha_4 = q^2(q^2 - 1)/2, \alpha_5 = q^2(q^2 - 1)/2, \alpha_6 = q^2(q^2 - 1)/2, \alpha_7 = q^2(q^2 - 1)/2, \alpha_8 = q^2(q^2 - 1)/2, \alpha_9 = q^2(q^2 - 1)/2, \alpha_{10} = q^2(q^2 - 1)/2, \alpha_{11} = q^2(q^2 - 1)/2, \alpha_{12} = q^2(q^2 - 1)/2, \alpha_{13} = q^2(q^2 - 1)/2, \alpha_{14} = q^2(q^2 - 1)/2, \alpha_{15} = q^2(q^2 - 1)/2$.

Proof. Let $(V, W) \in \Gamma_1$. The number of 3-orbits in $\Delta(k, l, m, n)$ is equal to the number of orbits of $PSp_6(q)$ on the set $\{X \in N_3 | \dim X \cap Y \cap Z = k, \dim X \cap Y = k + \ell, \dim X \cap Z = k + m, \dim Y \cap Z = k + n\}$. Thus we can find out into how many symmetrized 3-orbits each of the relations $\Delta(k, l, m, n)$ decomposes.

Let $(V, W, X) \in \Phi_j, (V, W) \in \Gamma_1$. The projection coefficient α_j of the relation $\Delta(k, l, m, n)$ on Φ_j is equal to $[PSp_6(q) : PSp_6(q) \cap (V, W, X)]$ if (V, W, X) and (W, V, X) lie in the same 3-orbit of $PSp_6(q)$, and to $2[PSp_6(q) : PSp_6(q) \cap (V, W, X)]$ otherwise.

As an example let us consider $\Delta(0, 1, 0, 0)$. Let us write $V = \langle n_1, n_2, n_3 \rangle$ and $W = \langle m_1, m_2, m_3 \rangle$. The substitution $h \in PSp_6(q)_{vw}$ is specified by a matrix $\begin{pmatrix} A^t & 0 \\ B & A^{-1} \end{pmatrix}$, where $A \in GL_3(q)$ and B is a symmetric matrix. If h specifies W, then it is easy to see that $A = \begin{pmatrix} * & 0 & 0 \\ 0 & A_t \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $|PSp_6(q)_{vw}| = q^3(q - 1)^3(q + 1)$. Let $X \in N_3, X \cap V = 0$. Then we can (uniquely) select in X a basis $l_i = m_1 + \beta_{i1}n_1 + \beta_{i2}n_2 + \beta_{i3}n_3, i = 1, 2, 3$, with the matrix $C = (\beta_{ij})$ being symmetrical [since $f(l_i, l_j) = 0$]. By requiring that $X \cap W = 0$, we obtain $[\beta_{12}, \beta_{22}, \beta_{32}] = 0$. The substitution h carries X into $X' = \langle m_1 + \beta_{i1}n_1 + \beta_{i2}n_2 + \beta_{i3}n_3, i = 1, 2, 3 \rangle, C' = A(B + C)A^t$. The matrix B can be selected in such a way that $B + C = \begin{pmatrix} 0 & 0 \\ 0 & C_1 \end{pmatrix}$, then $C' = \begin{pmatrix} 0 & 0 \\ 0 & C_1 \end{pmatrix}, C_i = A_1C_iA_1^t$, i.e., C_1 varies as a matrix of a bilinear form. It is well known that over F_q, $\text{char } F_q \neq 2$ there exist two classes of nonsingular symmetric bilinear forms, with $D_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $D_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ being the matrices of their representatives (g is a quadratic mismatch of F_q). Hence with an appropriate choice of $h \in PSp_6(q)_{vw}$, $\alpha_2 = \alpha_3 = q^3(q - 1)^3(q + 1)/2 = q^3(q^2 - 1)/2$, $\alpha_7 = q^3(q - 1)^3(q + 1)/2 = q^3(q^2 - 1)/2$, $\alpha_9 = q^3(q - 1)^3(q + 1)/2 = q^3(q^2 - 1)/2$.

Similarly, $\alpha_3 = 2[PSp_6(q)_{vw} : PSp_6(q)_{vw}] = q^3(q^2 - 1)(q^2 - 1)/2$.