THE K–THEORY AND THE INVERTIBILITY OF ALMOST PERIODIC TOEPLITZ OPERATORS

Jingbo Xia

We use K–theory to study the invertibility of systems of almost periodic Toeplitz operators.

INTRODUCTION

Let Π be an additive of subgroup R. Let AP(Π) be the collection of almost periodic functions f on R with a Fourier series \(f(t) = \sum_{\lambda \in \Gamma} a_{\lambda} e^{2\pi i \lambda t} \). It is well known that \(AP(\Pi) \cong C(\hat{\Pi}) \), where \(\hat{\Pi} \) is the Bohr compactification of \(\Pi \) [16]. Let \(H^2(\mathbb{R}) \) be the Hardy space of the upper half–plane and let \(P: L^2(\mathbb{R}) \to H^2(\mathbb{R}) \) be the orthogonal projection. The C*-algebra generated by all the Toeplitz operators \(T_{\varphi} = PM_{\varphi}|H^2(\mathbb{R}), \varphi \in AP(\Pi) \cong C(\hat{\Pi}) \), will be denoted by \(T(\Pi) \).

The commutator ideal of \(T(\Pi) \), i.e. the ideal generated by \(AB - BA, A, B \in T(\Pi) \), will be denoted by \(C(T(\Pi)) \). The algebras \(T(\Pi) \) and \(C(T(\Pi)) \) have been well studied by many authors [2, 3, 4, 5, 9, 12, 15, 18].

When \(\Pi \) is dense in \(\mathbb{R} \), there is a Breuer–Fredholm index theory related to a type–II \(\infty \) von Neumann algebra for Toeplitz operators \(T_{\varphi} \in T(\Pi) \) [3, 5, 9, 15]. Index is

Research supported in part by NSF under Grant No. DMS–8717185.
generally viewed as an obstruction to inverting an operator; any
study of index theory is always related to the investigation of
the invertibility of the operators in question. The index
theory for $\mathcal{T}(\Gamma)$ tells us, among other things, that for a
$\varphi \in \text{AP}(\Gamma) \subseteq \text{C}(\hat{\Gamma})$, $T\varphi$ is invertible if and only if φ is
invertible and the topological index of φ, which is none other
than the mean motion of the function, is 0 [3,5]. In the view
point of K-theory, this means $[\varphi] = 0$ in $K_1(\text{C}(\hat{\Gamma}))$.

Such a result would naturally lead one to investigate
the invertibility of Toeplitz operator T_{Φ} on $H^2(\mathbb{R}) \otimes \mathbb{C}^{n}$ with
a matrix symbol $\Phi \in C(\hat{\Gamma}) \otimes M_n$, where M_n is the collection of
$n \times n$ matrices. While the Breuer-Fredholm index theory can be
generalized to this class of operators [5,15], the topological
index of Φ, as one can see from simple examples, is no longer
the only obstruction to invertibility. What, then, are the
other obstructions?

In search for an answer, one turns to the K-theory
exact sequence
\[K_0(\text{C}(\Gamma)) \rightarrow K_0(\mathcal{T}(\Gamma)) \rightarrow K_0(\text{C}(\hat{\Gamma})) \]
\[K_1(\text{C}(\hat{\Gamma})) \rightarrow K_1(\mathcal{T}(\Gamma)) \rightarrow K_1(\text{C}(\Gamma)) \]
which comes from the well known short exact sequence
\[0 \rightarrow \text{C}(\Gamma) \rightarrow \mathcal{T}(\Gamma) \rightarrow \text{C}(\hat{\Gamma}) \rightarrow 0 \] [3,5,9],
hoping that $K_* (\mathcal{T}(\Gamma))$ might shed some light on the
invertibility of systems of Toeplitz operators. In a joint work
[12] by R. Ji and the author, the K-groups of the commutator
ideal $\text{C}(\Gamma)$ were computed for the purpose of classifying this
class of simple C^*-algebras. But this computation was not done
in the context of (0.1). Rather, it was done by making
connection between $\text{C}(\Gamma)$ and the C^*-algebra $C_0(\mathbb{R}) \times \Gamma$. It was