AN EFFICIENT ALGORITHM TO RECOGNIZE LOCALLY EQUIVALENT GRAPHS

ANDRÉ BOUCHET*

Received February 16, 1989
Revised December 14, 1989

To locally complement a simple graph F at one of its vertices v is to replace the subgraph induced by F on $n(v) = \{w : vw \text{ is an edge of } F\}$ by the complementary subgraph. Graphs related by a sequence of local complementations are said to be locally equivalent. We associate a system of equations with unknowns in $GF(2)$ to any pair of graphs $\{F, F'\}$, so that F is locally equivalent to F' if and only if the system has a solution. The equations are either linear and homogenous or bilinear, and we find a solution, if any, in polynomial time.

1. Local equivalence

Let F be a simple graph. The neighborhood of a vertex v of F is $n(v) = \{w : vw \text{ is an edge of } F\}$. To locally complement F at v is to replace the subgraph induced by F on $n(v)$ by the complementary subgraph. We denote by $F* v$ the local complement of F at v. Clearly

$$(F * v) * v = F.$$

For a word $v_1 v_2 \ldots v_q$ with letters in V we define

$$F * (v_1 v_2 \ldots v_q) = (((F * v_1) * v_2) \ldots) * v_q$$

and we say that $F' = F * (v_1 v_2 \ldots v_q)$ is locally equivalent to F. This is actually an equivalence relation because the above equality implies $F = F' * (v_q \ldots v_2 v_1)$. We notice that locally equivalent graphs are defined over the same vertex-set.

Local complementations are natural operations in the following situation. Let m be a word on a set of letters V and suppose that each letter precisely occurs twice in m. An alternance of m is a non-ordered pair xy of letters such that we alternatively meet $\ldots x \ldots y \ldots x \ldots y \ldots$ or $\ldots y \ldots x \ldots y \ldots x \ldots$ when reading m. The simple graph on the vertex-set V whose edges are the alternances of m is denoted by $A(m)$ and called the alternance graph of m. For example if $m = 041213243$ then $A(m)$ has edges 01, 12, 23, 34, 40. Consider some $v \in V$, the decomposition $m = P v Q v R$ where P, Q, R are subwords of m, and $m * v = P v Q v R$ where Q is the mirror-image of Q. With the preceding example we have $m * 1 = 0412013243$. It is easy to verify that $A(m * v) = A(m) * v$. This interpretation was introduced by A. Kotzig [6], and we give further details in [2]. Not every simple graph is an alternance graph. For example the 5-wheel is not.

* With partial support of P. R. C. Mathématiques et Informatique.

AMS subject classification (1991): 05C
2. Isotropic systems

This section recalls background properties proved in [3], except (2.5) proved in [4].

For any finite set V, we consider $\mathcal{P}(V)$, the power-set of V, with its canonical structure of vector-space over $GF(2)$. Thus for $X, Y \subseteq V$, $X + Y$ is the symmetric difference of X and Y. The neighborhood function of a simple graph F over the vertex-set V is the linear function $n : \mathcal{P}(V) \rightarrow \mathcal{P}(V)$ such that $n(v) = \{w : vw \text{ is an edge of } F\}$, $v \in V$.

Let K denote a 2-dimensional vector space over $GF(2)$, provided with the bilinear form given by $\langle x, y \rangle = 1$ if and only if $0 \neq x \neq y \neq 0$. For any finite set V we consider that the $2^{|V|}$-dimensional vector space K^V is provided with the bilinear form $\langle A, B \rangle = \sum(\langle A(v), B(v) \rangle : v \in V)$. An isotropic system is a pair $S = (L, V)$ where V is a finite set and L is a totally isotropic subspace of K^V (i.e. $\langle A, B \rangle = 0$ for every $A, B \in L$) such that $\dim(L) = |V|$.

A vector $A \in K^V$ is said to be complete if $A(v) \neq 0$ for every $v \in V$. For $P \subseteq V$ let $AP \in K^V$ be defined by $AP(v) = A(v)$ if $v \in P$ and $AP(v) = 0$ in $v \notin P$. Let $\hat{A} = \{AP : P \subseteq V\}$ and notice that \hat{A} is a subspace of K^V. If A is complete and $\dim(L \cap \hat{A}) = 0$ then A is called an Eulerian vector of S. The reader may refer to [3] for a correspondence between 4-regular graphs and isotropic systems where Eulerian vectors correspond to Euler tours.

Two vectors $A, B \in K^V$ are supplementary if $0 \neq A(v) \neq B(v) \neq 0$ for every $v \in V$. Let (F, A, B) be a triple with a simple graph F and two supplementary vectors $A, B \in K^V$. Where n is the neighborhood function of F and

$L = \{An(P) + BP : P \subseteq V\},$

it is easy to verify that $S = (L, V)$ is an isotropic system (see [3] for details). We call (F, A, B) a graphic presentation of S and F a fundamental graph of S.

(2.1) If (F, A, B) is a graphic presentation of an isotropic system S, then A is an Eulerian vector of S. Conversely if A is an Eulerian vector of S, then there exists a graphic presentation (F', A', B') such that $A' = A$, and this graphic presentation is unique.

(2.2) Let A be an Eulerian vector of the isotropic system $S = (L, V)$, and let $v \in V$. There exists precisely one Eulerian vector A' satisfying $A'(v) \neq A(v)$ and $A'(w) = A(w)$ for every $w \in V \setminus \{v\}$.

We use the notation $A * v$ to represent A' of (2.2). For any word $m = v_1v_2 \ldots v_q$ on V, we let $A * m = (((A * v_1) * v_2) * \ldots) * v_q$.

(2.3) If A and A' are any two Eulerian vectors of an isotropic system $S = (L, V)$, then there exists a word m on V such that $A' = A * m$.

(2.4) Let $P = (F, A, B)$ be a graphic presentation of an isotropic system $S = (L, V)$, and let $v \in V$. The graphic presentation of S induced by the Eulerian vector $A * v$ is $P * v = (F * v, A + Bv, B + An(v))$ (so that $A * v = A + Bv$).