COHOMOLOGY OF PROJECTIVE VARIETIES
WITH REGULAR SL_2 ACTIONS

E. Akyildiz\(^{(1)}\) and J.B. Carrell\(^{(2)}\)

Let G be a complex semisimple linear algebraic group, B a fixed Borel subgroup of G, H a maximal torus of G in B, g and h the Lie algebras of G and H, respectively. Kostant has expressed the cohomology ring of G/B as the coordinate ring $A(N \cap h)$ of the scheme theoretic intersection $N \cap h$ of the variety of nilpotent elements N of g with h. The purpose of this paper is to give a similar description of the cohomology ring of a nonsingular complex projective variety X with a "regular" SL_2 action. We will show that there is an intrinsically defined subscheme Z of X whose coordinate ring $A(Z)$ is isomorphic to the cohomology ring of X. When $X = G/B$, we will identify $A(Z)$ with Kostant's description $A(N \cap h)$.

0. Introduction

One of the most useful aspects of a flag manifold G/B is that its cohomology ring $H^*(G/B, \mathbb{C})$ admits several different descriptions. The classical semi-simple or Borel-Chevalley description says that $H^*(G/B, \mathbb{C})$ is the coinvariant algebra $A(h)/I_W$ associated to the Cartan subalgebra h of g. On the other hand, the nilpotent or Kostant description says $H^*(G/B, \mathbb{C})$ is the coordinate ring $A(N \cap h)$ of the scheme theoretic intersection of the nilpotent variety $N \subset g$ with h.

\(^{(1)}\)Partially supported by the University of Petroleum and Minerals Research Project MS/Action/86

\(^{(2)}\)Partially supported by a grant of the Natural Sciences and Engineering Research Council of Canada
In this paper we will study this semi-simple/nilpotent phenomenon as a special case of what happens when one has an action of $\text{SL}_2(\mathbb{C})$ on a smooth complex projective variety X.

We call a holomorphic action of SL_2 on X regular if maximal unipotent subgroups have isolated fixed points. In this case, one knows that any maximal torus also has isolated fixed points and every maximal unipotent has a unique fixed point. We will now describe the general semi-simple/nilpotent situation. Let B denote a Borel subgroup of SL_2 and suppose V and V_s are respectively the holomorphic vector fields generated by the maximal unipotent and maximal torus in B. The nilpotent description of $H^*(X, \mathbb{C})$ is given in Proposition 1.1 where it is shown that the coordinate ring $A(Z)$ of the zero scheme Z of V has a canonical grading making it isomorphic in the sense of graded rings with $H^*(X, \mathbb{C})$. In the semi-simple case, however, the coordinate ring $A(Z_s)$ of the variety Z_s of the zeros of V_s is not graded. Rather $A(Z_s)$ admits a filtration $F_0 \subset F_1 \subset \ldots$ such that $F_p F_q \subseteq F_{p+q}$ and

$$\text{Gr } A(Z_s) = \oplus F_p / F_{p-1} \simeq \oplus H^{2p}(X, \mathbb{C}) = H^*(X, \mathbb{C}).$$

For G/B, the filtration on $A(Z_s)$ is very well understood. Explicitly, let $h \in g$ be a regular semi-simple element that generates V_s. We may assume $h \in k$, so let $W \cdot h$ denote the orbit of h under W. The coordinate ring $A(W \cdot h)$ has a natural filtration and a fundamental result is that $A(W \cdot h) \simeq A(Z_s)$ as filtered rings ([3,7]). Thus

$$\text{Gr } A(W \cdot h) \simeq H^*(G/B, \mathbb{C}).$$

It is not hard to see that $\text{Gr } A(W \cdot h)$ is the coinvariant algebra $A(h)/I_W$, so this amounts to the semi-simple description (Proposition 2.2).

In the nilpotent case we may assume that the unique zero of V is given by $B \in G/B$. A natural coordinate system near B is given by b^{-}_u and we may consider the grading on $A(b^{-}_u)$ induced by V_s explained in Proposition 1.1. With respect to this grading, the ideal $I(Z)$ of Z is homogeneous, and we are able to find a graded homomorphism $\phi: A(h) \rightarrow A(b^{-}_u)$. In Theorem 2.2 we show that ϕ induces an isomorphism of graded rings $\tilde{\phi}: A(h)/I_W \rightarrow A(b^{-}_u)/I(Z)$.

474