Half-lives and Q_β measurements for new nuclei of 89Tc and 89mTc

K. Heiguchi¹, T. Hosoda¹, T. Komatsubara¹, T. Nomura¹, K. Furuno¹, R. Nakatani², S. Mitarai², and T. Kuroyanagi²

¹ Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
² Department of Physics, Faculty of Science, Kyushu University, Fukuoka 812, Japan

Received July 16, 1990

Neutron deficient isotopes of 89Tc and 89mTc have been produced through the 60Ni(32S, p $2n$)89Tc at 95 MeV and the 58Ni(35Cl, $2p$ $2n$)89Tc reaction at 135 MeV. A rotating catcher foil system was used to collect the activities and transfer them to a measuring position for $\beta-\gamma$ spectroscopy. The half-lives of 89Tc and 89mTc were measured to be 12.8 ± 0.9 s and 12.9 ± 0.8 s, respectively. The total decay energy, Q_{EC}, for 89Tc was determined to be 7.51 ± 0.21 MeV.

PACS: 23.90.+w; 27.50.+e

1. Introduction

Up to now, no detailed investigation of the decay properties of 89Tc has been reported. Although Gallagher et al. [1] searched for the decay of 89Tc, they could not observe it because of very small cross section in the 92Mo(p, $4n$) reaction. A few low-lying excited levels of 89Mo which is the daughter nucleus of 89Tc were investigated by several authors. Pardo et al. [2] measured the mass of 89Mo using the 92Mo(3He, 6He)89Mo reaction, and tentatively assigned the spins and parities of three low-lying levels of 89Mo. The assignments are $9/2^+$, $7/2^+$ and $1/2^-$ to the ground state, 124 ± 10 and 400 ± 40 keV level, respectively. Gallagher et al. [3] observed 118.8 and 268.5 keV γ-rays emitted from an isomeric state produced by the 92Mo(p, $3n$)89mMo reaction. The half-life of this isomeric state was measured to be 190 ± 15 ms (hereafter, the half-life will be simply written as $T_{1/2}$). The energies of both γ-rays are in agreement with the excitation energies deduced by Pardo et al. [2] with the experimental uncertainty. The value of $T_{1/2}$ is consistent with $E3$ assignment for 268.5 keV transition. From the singles γ-ray intensity, $T_{1/2}$, systematical trends in this mass region and the data in [2], Gallagher et al. reported the decay scheme of 89mMo as shown in the left part of Fig. 5.

In this article, we describe our recent measurements on the decay of 89mMo by γ-ray spectroscopy, and of its population from the previously unknown isotopes 89Tc and 89mTc by $\beta-\gamma$ coincidence techniques. The Q_{EC} for the decay of 89Tc has been deduced from the end point measurements and compared to results from several neighboring nuclei and recent theoretical mass predictions [8].

2. Experimental procedure

A preliminary experiment was performed at the Tandem Accelerator Laboratory in the Kyushu University. The 60Ni(32S, p $2n$)89Tc reaction at a bombarding energy of 95 MeV was employed to measure $\beta-\gamma$ coincidence spectra.

Further experiments including $\gamma-\gamma$ and $X-\gamma$ coincidence measurements were carried out by using the tandem-postaccelerator system at the University of Tsukuba [4]. The residual activity of 89Tc was produced through the 58Ni(35Cl, $2p$ $2n$)89Tc reaction at 135 MeV. The target was an enriched (99.89%) 58Ni foil of 1.0 mg/cm² thickness. The residual nuclei recoiled from the target were captured on Ta foils placed at about 5 mm behind the target. Thirty nine catcher foils were mounted on a rotatable disk 50 cm in diameter. The thickness of each foil was 11.7 mg/cm². After irradiation, the activities were transported to the counting position by 180° rotation of the disk. The time sequence of the measurements was controlled by a microcomputer. A typical irradiation and measurement time were 22 and 36 s, respectively.

Measurements of singles γ-rays, $\beta-\gamma$, $X-\gamma$ and $\gamma-\gamma$ coincidences were made with two high-purity Ge detectors. Both detectors have a thin entrance window (Be) for transmission of X-rays, and sufficient relative efficiencies (18.6% and 26.7%) in order to observe γ-rays and high-energy positrons simultaneously. Two amplifier systems were prepared. One was adjusted at high gain
for X-ray detection, whereas the other system was operated at low gain for detection of high-energy positrons with energies between 2 and 10 MeV. To obtain the decay curve of radiations, multispectrum analyses were performed. After the rotation of the disk, energy signals from the detectors were analyzed in a total counting time of 36 s which was divided into 12 intervals of 3 s. The energy scale of the spectrometers was calibrated by 57Co, 60Co and 152Eu sources for X- and γ-rays. For positrons, the full-energy and escape peaks of 4.4 MeV γ-rays from an 241Am–Be source were used as well as the 1.1 and 1.3 MeV γ-rays from 60Co source.

3. Experimental results

Figure 1 shows a typical singles spectrum of γ-rays. The γ-rays of 118.8 and 268.5 keV which have been assigned to the decay of 89mMo with $T_{1/2} = 190 \pm 15$ ms by Gallagher et al. [3] are clearly observed. Unlabeled peaks in Fig. 1 are unassigned peaks with longer half-lives. From the decay curve obtained from singles spectra, the lifetimes were determined to be $T_{1/2} = 13.16 \pm 0.33$ s for 118.8 keV γ-ray and $T_{1/2} = 15.7 \pm 1.4$ s for 268.5 keV γ-ray, respectively. A half-life of $T_{1/2} = 13.3 \pm 4.6$ s was also obtained for the 118.8 keV γ-ray in the 60Ni(35S, p 2n)89Tc reaction. However, these values of $T_{1/2}$, especially for the 268.5 keV γ-ray, would be somewhat uncertain because of the poor S/N ratio due to the large Compton continuum in singles spectra and a contribution to the decay curve from activities with longer lifetimes. As discussed below, the values of $T_{1/2}$ obtained from γ–γ and β–γ coincidence are more certain.

In Fig. 2, the square root of counts (\sqrt{N}) is displayed for the high-energy part of the positron spectrum measured in coincidence with the 118.8 keV γ-ray. In the present analysis of the positron spectrum, the \sqrt{N} plot was more straight than the Fermi-Kurie plot. An endpoint energy was determined to be 6.37 ± 0.21 MeV. Only the statistical error was included, since it was rather difficult to determine a precise response function of the detector. The peak of 268.5 keV γ-ray did not appear in a spectrum measured in coincidence with positrons having energies above 2 MeV.

Typical γ–γ coincidence spectra observed with a resolving time of 20 ns are shown in Fig. 3. The 268.5 keV γ-ray is not in coincidence with annihilation radiation, but with the 118.8 keV γ-ray. In the lower spectrum in Fig. 3, a weak peak is seen around 511 keV. This peak was caused in the subtraction process of data analysis. Also, it should be noted that activities with longer half-lives contribute to the 268.5 keV peak. No other γ-ray in coincidence with the 118.8 and 268.5 keV γ-rays was observed. These facts imply that the 268.5 keV γ-ray follows only the decay of 89mMo, while the 118.8 keV γ-ray follows both the β- and the isomeric decay.

![Fig. 2](image-url)