Shape Coexistence at High Spin in 187Au

C. Bourgeois 1, M.G. Porquet 2, N. Perrin 1, H. Sergolle 1, F. Hannachi 2, G. Bastin 2, and F. Beck 3

1 Institut de Physique Nucléaire, Orsay, France
2 Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Orsay, France
3 Centre de Recherches Nucléaires, Strasbourg, France

Received October 6, 1988; revised version December 19, 1988

High-spin states in 187Au have been populated in the 172Yb(19F, 4n) reaction and studied with in-beam spectroscopic techniques using the “Château de Cristal” 4π-multidetector array. A comprehensive level scheme of 187Au has been established. Experimental band crossing frequencies and gains in alignment were deduced. Shape coexistence in 187Au, well established at low spin, is found to survive up to spin $57/2$, and manifests itself through well separated oblate and prolate structures.

PACS: 21.10.Re; 23.20.Lv; 27.70.+q

1. Introduction

Odd-A gold nuclei with $A \leq 189$ were among the first examples of shape coexistence revealed by means of nuclear spectroscopic studies from radioactive decay of mass-separated sources and heavy-ion induced reactions [1–5]. The proton Fermi level for gold nuclei lies between the $\pi h_{11/2}$ and $\pi h_{9/2}$ subshells, and, for $A \leq 189$, shape coexistence manifests itself, already at low spin, through two $\Delta I = 2$ decoupled bands involving the odd proton in the $h_{11/2}$ orbital and in the $h_{9/2}$ orbital which are characteristic of oblate shape and prolate shape respectively. The $\pi h_{11/2}$ band-head energy remains quite constant throughout the odd-A gold isotopes while the $\pi h_{9/2}$ one (together with the $\pi i_{13/2}$ band head situated a few hundred keV above) decreases steeply with A. In 187Au, the $\pi h_{9/2}$ band head becomes lower than the $\pi h_{11/2}$ one though the $1/2^+$ ground state still corresponds to an oblate shape [6]. In 185Au, the $5/2^-$ member of the $\pi h_{9/2}$ prolate band becomes the ground state [7]. The strong and constant hindrance factor of the $11/2^-$ to $9/2^-$ interband transition throughout the odd-mass Au nuclei [8] is noteworthy.

Measurements of the γ-multiplicity following the 173Lu(16O, 4n) reaction [9] seem to indicate that shape coexistence survives in 187Au to quite high-spin values. Calculations within the cranked Nilsson-Strutinsky framework [10] show that the collective prolate minimum in the deformation-energy surface of 183Au survives to spins up to 50–$55\hbar$ while the minimum in the $\gamma = -60^\circ$ to -120° sector ends for spins 40–$45\hbar$.

The use of large efficiency multidetector 4π-arrays for γ spectroscopy offers nowadays the possibility to detect discrete transitions deexciting weakly populated high-spin states. We have used the “Château de Cristal” multidetector array [11] to study the states of 187Au in order to follow the shape coexistence at high spin, and to try to identify the orbitals which are involved in the different structures observed in 187Au, especially to check the role of the intruder low-Ω high-j orbitals.

Results on 187Au high-spin states have already been presented by Johansson et al. [12]. Data on conversion electrons have been obtained by Vieu et al. [13]. The present work gives an enlarged version of the level scheme of 187Au.

2. Experimental Methods

Levels of 187Au were populated in the 172Yb(19F, 4n) reaction at the MP Tandem accelerator at Strasbourg. Targets, 1 mg/cm2, enriched to 92.5%, were deposited on 0.1 mm lead backing. Gamma-rays were detected by the “Château de Cristal” set-up consisting of 12 Compton-suppressed high-purity germanium detec-
Fig. 1. Level scheme of $^{187}_{79}$Au. Energies are labeled in keV. The width of the arrows stands for the total intensity of the transitions. The spin values are multiplied by 2. Part 1: Bands exhibiting collective behavior. The inset represents the deexcitation pattern of the low-energy states as observed in the decay of $^{187}_{79}$Hg [5, 8, 16]. Part 2: Systems of levels with non-collective behavior.