Pairing effects in 239Pu$(n, 2n)$ reaction cross section

V.M. Maslov

Radiation Physics and Chemistry Problems Institute, 220109 Minsk-Sosny, Republic of Belarus

Received: 13 May 1993/Revised version: 20 September 1993

Abstract. Near-threshold behaviour of 239Pu$(n, 2n)$ reaction cross section is interpreted within a statistical model. It is shown that an apparent change in the cross section data slope could be attributed to the jump-like excitation of two-quasi-particle states in the residual 238Pu nucleus. The excitation threshold value is consistent with convenient estimation of the correlation function A_0.

PACS: 25.40.-h; 21.10.Ma

There is a well-known discrepancy between measured data on 239Pu$(n, 2n)$ reaction cross section [1] and convenient statistical model calculations, which is virtually ignored [2-4]. The data at excitations just above the reaction threshold appear to be much lower than theoretical predictions. In other words, we observe a step-like trend in $(n, 2n)$ data behaviour. Recently we have interpreted step-like behaviour of 233U neutron-induced fission cross section as due to jump-like excitation of two-quasi-particle states [5]. It occurs in fissioning nucleus 235U above the pairing gap at saddle deformation. Phenomena of the same nature may manifest themselves in other reaction data also. The $(n, 2n)$ reaction on a Z-even, N-odd target is one example. Here the behaviour apparent in $(n, 2n)$ cross section data could be correlated with the effect of the same nature occurring in 238Pu residual nucleus, excited in 239Pu$(n, 2n)$ reaction. The additional evidence explaining the non-smooth behaviour of that reaction cross section comes from integral data on the 239Pu$(n, 2n)$ reaction cross section measured with fission spectra neutrons [3].

Statistical description of $(n, 2n)$ reaction cross section

In the vicinity of the $(n, 2n)$ reaction threshold, the competing reactions are $(n, n\gamma)$, (n, nf), and $(n, 2n)$ itself. The main factor defining energy dependence of fission, radiative and neutron emission transmission coefficients is the level density. In the case of the emissive fission reaction 239Pu(n, nf) it is the level density of 239Pu at saddle deformations, while for the $(n, 2n)$ reaction it is the level density of 238Pu at equilibrium deformations. We are dealing here with the second cascade $(n, n \times)$ reaction probabilities, assuming that the ones for first-chance fission (n, f), radiative capture (n, γ) and neutron emission (n, n'), including the pre-equilibrium contribution, are fixed as described elsewhere [4, 6]. At least they allow crude fitting of the total fission and $(n, 2n)$ data. Some discrepancy of various $(n, 2n)$ reaction cross section calculations [2-4] at incident neutron energies $E=8-20$ MeV could be attributed to different neutron emission/fission competition.

In a near-threshold region one may choose to ignore the data points trend, as the authors of [2, 3] have done, or try to fit the available data [4]. However in both cases they use the smooth level density function, obtained in a Gilbert and Cameron approach [7] as a constant temperature extrapolation of the Fermi gas model [2, 3] or pairing model with an unlimited number of quasi-particles [8], as in [4]. When these approaches are adopted to represent continuum levels of 238Pu residual nucleus at equilibrium deformations it is impossible to reproduce an apparent step-like behaviour of the data on $(n, 2n)$ reaction.

When the incident neutron energy E is less than $[U_2 + \epsilon_1 + \epsilon_2 + B(239\text{Pu})]$, where U_2 is the two-quasi-particle state excitation threshold, ϵ_1 and ϵ_2 are first and second neutron kinetic energies, and $B(239\text{Pu})$ is the neutron binding energy of 239Pu compound nucleus, the $(n, 2n)$ cross section is governed by collective levels lying within the pairing gap [9]. At higher excitations energies the continuum level density could be represented as follows.

In the adiabatic approximation quasi-particle and collective state contributions to the total level density factorize [8, 10], that is to say

$$\rho(U, J, \pi) = K_{rot}(U, J) K_{vib}(U) \rho_{qp}(U, J, \pi).$$

(1)
Here \(\rho_{qp}(U, J, \pi) \) is the quasi-particle level density at excitation energy \(U \), for angular momentum \(J \), and parity \(\pi \). \(K_{rot}(U, J) \) and \(K_{vib}(U) \) are factors of rotational and vibrational enhancements of level density, respectively. The density of quasi-particle levels \(\rho_{qp}(U, J, \pi) \) could be represented as

\[
\rho_{qp}(U, J, \pi) = \frac{\omega_{qp}(U)}{4\sqrt{2\pi J+1}} \exp\left(-\frac{J(J+1)}{2\sigma^2}\right). \tag{2}
\]

Here \(\omega_{qp}(U) \) is the intrinsic quasi-particle state density, and \(\sigma \) and \(\sigma_1 \) are angular momentum distribution parameters. The angular momentum distribution parameter \(\sigma^2 \) could be represented as

\[
\sigma^2 = \frac{\sum_n \langle m^2 \rangle \omega_n}{\sum_n \omega_n}, \tag{3}
\]

where \(\langle m^2 \rangle = 0.24 A^{2/3} \) is the average value of the squared projection of the angular momentum of the single-particle states; \(\sigma_1 = f_t(t(U)) \), the moment of inertia for rotation with respect to the axis perpendicular to the symmetry axis \(F_2 \); and thermodynamic temperature \(t(U) \) were defined with the pairing model [8]. The \(K_{rot}(U, J) \) value depends in fact on the order of symmetry of the nuclear shape configuration. With actinoid equilibrium deformations the configuration is axially symmetric, so that \(K_{rot}(U, J) \approx \sigma_1^2 \). At saddle deformations of \(^{239}\text{Pu}\) nuclei, fissioning in an \((n, f)\) reaction, at the inner saddle \(K_{rot}(U, J) \approx 2/\pi \sigma_1^2 \sigma \) and at the outer one, \(K_{rot}(U) \approx 2\sigma_1^2 \). The energy dependence of \(K_{vib}(U) \) was defined on the basis of the liquid drop estimate of the nuclear surface multipole vibrations density: \(K_{vib} \approx \exp(U^{2/3}) \) [8].

The \(\omega_{qp}(U) \) could be represented as the sum of \(n \)-quasi-particle state densities \(\omega_n(U) \). The \(\omega_n(U) \) is frequently represented by the Boltzmann gas model expression:

\[
\omega_{qp}(U) = \sum_n \omega_n(U) = \sum_n \frac{g^n(U-U_n)^{n-1}}{(n/2)!^2(n-1)!} \tag{4}
\]

where \(g \) is the single-particle state density at the Fermi surface, \(n \) is the number of quasi-particles, \(U_n \) is the threshold energy for excitation of the \(n \)-quasi-particle configuration, \(n = 2, 4 \ldots \) for even-even nuclei and \(n = 1, 3 \ldots \) for odd nuclei. The \(\omega_n(U) \) is critically dependent on the threshold values for excitation of the \(n \)-quasi-particle configurations. Other authors [11] have shown that the simple formula \(U_n = n \Delta_0, \Delta_0 = 12/\sqrt{A} \), where \(A \) is mass number, overestimates threshold values and distorts an energy dependence of \(\omega_n(U) \) compared with a pairing model with a fixed number of quasi-particles and constant single-particle state density. It has been shown elsewhere [12] that within a convenient Boltzmann gas model the results of the intrinsic state density \(\omega_2(U) \) calculations can be reproduced with an equidistant spectrum pairing model [13]. The threshold values \(U_n \) should be defined as follows from [12]:

\[
U_n = \begin{cases} E_c(3.23n/n_c - 1.57n^2/n_c^2), & \text{if } n \leq 0.446 n_c \\ E_c(1 + 0.627n^2/n_c^2), & \text{if } n > 0.446 n_c \end{cases} \tag{5}
\]

Here, \(n_c = 2 \ln 2 g t_c \), critical temperature \(t_c = 0.571 \Delta_0 \), condensation energy \(E_c = 0.25 g \Delta_0^3 \). This \(U_n \) estimate embodies the energy dependence of a correlation function \(A_n(U) \) as well as a modified Pauli correction to the excitation energy. The shell effects dumping in \(\omega_{qp}(U) \) at high excitations could be modelled with the energy dependence of \(a \)-parameter \((a = \pi^2 g/6) \):

\[
a(U) = \begin{cases} a(1 + \delta f(U-E_c)/(U-E_c)), & U > 0.47 \Delta_0^2 - m \Delta_0 \\ a_c(U) = a_c, & U \leq 0.47 \Delta_0^2 - m \Delta_0 \end{cases} \tag{6}
\]

Here \(m = 0, 1, 2 \) in case of even-even, odd and odd-odd nuclei, respectively, \(f(x) = 1 - \exp(-0.064x) \), modelling shell effects dumping with energy. Equation (3) corresponds to the case of Fermi particles of one kind, however in [14] it was shown that in the case of Fermi particles of two kinds the energy dependence of \(\omega_n(U) \) (4) changes only slightly. We normalize the \(\rho(U, J, \pi) \) (1–6) by the \(a \)-parameter fitting to the neutron resonance spacing. Note, however, that when modeling a jump-like structure in total intrinsic state density one should keep in mind the rather crude quality of approximation \((\approx 50\%)\) with the Boltzmann gas model \(\omega_2(U) \) of the pairing model \(\omega_2(U) \) [12], especially in the threshold regions of excitation of \(n \)-quasi-particle configurations. The energy dependence of \(\omega_2(U) \) in the Boltzmann gas model, two-quasi-particle excitation threshold \(U_2 \) given by (5) and that in the pairing models [11, 13] are drastically different. In the former case we have \(\omega_2(U) \approx (U-U_2) \), while in the latter \(\omega_2(U) \) is virtually energy-independent above threshold energy \(U_2 \).

The analysis of \(^{239}\text{Pu}(n, 2n)\) reaction data near threshold

The experimental data on the \(^{239}\text{Pu}(n, 2n)\) reaction cross section are shown on the Fig. 1. We observe that the