Ditkin’s Condition and Primary Ideals in Central Beurling Algebras

By

Richard D. Mosak¹, Rochester, N.Y.

(Received 5 April 1977)

Abstract

In this note some questions of ideal theory for the center and more generally the B-fixed subalgebras of a Beurling algebra $L^1_\omega(G)$ are discussed. Sufficient conditions on ω are given for these subalgebras to satisfy Ditkin’s condition, or for primary ideals to be maximal or at least of finite codimension.

Let G be a locally compact group with Haar measure dx, and let B be a group of automorphisms of G, containing the group $I(G)$ of inner automorphisms, such that G is an $[FC]$ group; that is, the orbits $B[x]$ are relatively compact for each $x \in G$. Let ω be a weight function on G, that is a measurable, locally bounded function satisfying $\omega(x) \geq 1$ and $\omega(xy) \leq \omega(x)\omega(y)$ for all $x, y \in G$. Then one can define the Beurling algebra $L^1_\omega(G) = \{f \in L^1(G): \|f\|_\omega = \int_G |f(x)|\omega(x)dx < \infty\}$, a subalgebra of $L^1(G)$ under convolution, and a Banach algebra in the norm $\| \cdot \|_\omega$. In previous papers [5, 6] J. Liukkonen and the author have studied the center $Z L^1_\omega(G)$ and the B-fixed subalgebra $Z^B L^1_\omega(G) = \{f \in L^1_\omega(G): f \circ \beta = f \text{ in } L^1_\omega \text{ for each } \beta \in B\}$. These algebras are always semisimple commutative Banach algebras, and a sufficient condition on the rate of growth of ω was given in [5] for $Z^B L^1_\omega(G)$ to be regular and Tauberian. The question of whether Ditkin’s condition is satisfied, or whether closed primary ideals are maximal, was treated only for the case $\omega = 1$ [6, § 3]. An example was given there for which closed primary ideals are not maximal, and a class of groups was given for which Ditkin’s condition holds in $Z L^1_\omega(G)$ (hence, in particular, for which closed, primary ideals are maximal).

¹ Research partially supported by the National Science Foundation.
The purpose of this note is to find more general circumstances in which Ditkin's condition, or its consequence concerning primary ideals, holds in $\mathcal{Z}^B L^1_\omega(G)$.

The results in [5] concerning $\mathcal{Z}^B L^1_\omega(G)$ were, for the most part, derived under the assumption that ω is B-invariant. This assumption is somewhat inconvenient, and for many purposes it seems preferable to replace it by a structural assumption on G and B. Thus we shall assume, in the remainder of this note, that G is an $[FC]_W$ group, and

that B consists of automorphisms of bounded displacement;

that is, $\{\beta x \cdot x^{-1} : x \in G\}$ is relatively compact for each $\beta \in B$. When $B = I(G)$ itself this assumption is automatically fulfilled so the results of this paper hold for any $[FC]$-group. On the other hand if G is an abelian group without compact subgroups (except the trivial subgroup) then this assumption forces B to consist only of the identity automorphism [3, (3.18)].

Under the hypothesis that B acts by automorphisms of bounded displacement, one can prove that all the results in [5] from (1.3) through (3.1) are still valid without the assumption that the weight function ω be B-invariant. Since we shall want to make use of this assertion later we give a quick sketch of the proof. First one shows that every weight function on G is (under the given hypothesis) at least locally B-invariant. More precisely, the weight function $\omega_0 = \sup_{\beta \in B} \omega \circ \beta$ is B-invariant, and for each open, compactly generated, B-invariant subgroup $H \subset G$, $\omega|_H$ is equivalent to $\omega_0|_H$ (i.e. for some constants $c, d > 0$, $c \omega|_H \leq \omega_0|_H \leq d \omega|_H$). Indeed, since H is a compactly generated $[FC]$-group it contains a maximal compact subgroup K; K is characteristic in H, and H/K is abelian and aperiodic [3, (3.20)]. Consequently B acts trivially on H/K, that is, $B[x] \subset xK$ for each $x \in H$, so $\omega(x) \leq \omega_0(x) \leq (\sup_K \omega) \omega(x)$ on H. From this one shows easily that $Z^B C_\omega(G)$ is $\| \cdot \|_\omega$-dense in $A = Z^B L^1_\omega(G)$: for a given $f \in A$, one considers the subgroup generated by a sufficiently large compact subset of $\text{supp} f$, and applies [5, (1.3)]. The next step is to show that the weight function $\Omega(x) = \lim_{n \to \infty} \omega(x^n)^{1/n}$ defined in [5, § 2] is B-invariant, and that a continuous B-spherical function φ on G [5, (1.4)] is bounded by $\omega(\| \varphi \|_\infty < \infty)$ if and only if φ is bounded by $\Omega(\| \varphi \Omega \|_\infty < \infty)$. This is a pointwise condition so it also can be checked on appropriately chosen compactly generated subgroups, using [5, (2.2)]. The