ON STABLE AND UNIFORM RANK-2 VECTOR BUNDLES ON P² IN CHARACTERISTIC p

Herbert Lange

The uniform rank-2 vector bundles on P^n are determined and the behaviour of the stable rank-2 vector bundles on P² under restriction to a general line is studied, where P^n denotes the n-dimensional projective space over an algebraically closed field of positive characteristic.

Introduction: In the theory of rank-2 vector bundles on P^n in characteristic 0 there are 2 important theorems, the proofs of which use the characteristic 0 assumption, namely the theorem of van de Ven, which says that a uniform rank-2 vector bundle on P^n is either a direct sum of line bundles or a twist of the tangent bundle on P² (cp. [6]) and the theorem of Grauert-Mülich, which says that the stability-degree of the restriction of a stable rank-2 vector bundle to a general line is 0 or -1 (cp. [1]). (For the definitions compare section 2).

The first question is: are the characteristic restrictions necessary? It is easy to see that they are. Hence the problem arises: What is the situation in characteristic p>0? The aim of this paper is to determine the uniform rank-2 vector bundles on P^n and to prove the corresponding result of the theorem of Grauert-Mülich on P², both for characteristic p>0. It turns out that there are more uniform rank-2 vector bundles (cp. Theorem 2.4) and that the above mentioned stability-degree can become arbitrarily negative (cp. Theorem 3.1).
The proofs of both theorems use the original proofs whenever possible. Especially for sake of shortness the "standard construction" of [1],4 is not repeated.

I should like to thank Israel Vainsencher for some valuable conversations, the staff of the Departamento de Matemática da Universidade de Pernambuco for hospitality, and CNPq and GMD for support.

1) This section contains some auxiliary results on the Frobenius morphism used in sections 2 and 3. Let k be an algebraically closed field of characteristic p>0. If f: X → Y is a morphism of algebraic varieties over k, let F_Y denote the relative Frobenius morphism on X that is defined by the following diagram, where F means the absolute Frobenius

![Diagram of Frobenius morphism]

If Y is the spectrum of a field κ, we write F_κ instead of $F_{\text{Spec}(\kappa)}$. If $\kappa=k$, then X and $Y_{X,Y}$ are canonically isomorphic only having a different κ structure and F_κ is just the k-linear Frobenius.

Now let F^n be projective n-space over k and E a rank-2 vector bundle on F^n, that is a locally free O_{F^n}-module of rank 2.

Then we have for any line l in F^n:

Lemma 1.1: If $E/l = O_{F^n}(a) \oplus O_{F^n}(b)$ then $F^*E/l = O_{F^n}(p.a) \oplus O_{F^n}(p.b)$.