Possible Violation of the $\Delta S = \Delta Q$ Selection Rule in Leptonic Decays of Σ^+-Hyperons

Institut für Hochenergiephysik der Universität Heidelberg

Received August 19, 1967

We have found a possible example of the rare decay $\Sigma^+ \rightarrow n \mu^+ \nu$, which violates $\Delta S = \Delta Q$. The positive decay track of the Σ^+ comes to rest in the hydrogen bubble chamber and decays into an e^+. This track has all the characteristics of a stopping μ^+. The decay neutron fortuitously scatters twice, producing two recoil protons. The only other possible interpretation of the event is $\Sigma^+ \rightarrow n \gamma (\pi^+ \rightarrow \mu^+ \nu)$, where the $\pi^+ \rightarrow \mu^+ \nu$ decay produces no deflection ($\theta < 0.1$ rad) and no significant change in curvature. Using the p-wave radiative decay predictions of BARSHAY et al.¹ we calculate that the integrated branching ratio for such "accidental" events is

$$\Gamma(\Sigma^+ \rightarrow n \gamma (\pi^+ \rightarrow \mu^+ \nu))/\Gamma(\Sigma^+ \rightarrow n \pi^+) = 1.6 \times 10^{-6}.$$

Most of the contribution to this "accidental" branching ratio comes from radiative decays where the π^+ mesons have ranges less than 1 mm ($p_{\pi} < 20$ MeV/c). If one excludes those μ's with ranges less than 1.2 cm the above "accidental" branching ratio becomes 5.5×10^{-7}. With this figure we estimate that we should have seen 6.5×10^{-2} events of this type thusfar in our experiment. The neutron momentum does not help in deciding between the two hypotheses. We therefore assign a confidence level of 7% for the radiative hypothesis. For the leptonic hypothesis we obtain an estimate of the branching ratio,

$$\Gamma(\Sigma^+ \rightarrow n \mu^+ \nu)/\Gamma(\Sigma^+ \rightarrow n \pi^+) = 5 \times 10^{-5}.$$

If one further accepts the $\Sigma^+ \rightarrow n \mu^+ \nu$ event reported by BARBARO-GALTIERI et al.² and the $\Sigma^+ \rightarrow ne^+ \nu$ event reported by NAUENBERG et al.³, one obtains the $\Delta S = -\Delta Q$ leptonic branching ratio

$$[\Gamma(\Sigma^+ \rightarrow n \mu^+ \nu) + \Gamma(\Sigma^+ \rightarrow ne^+ \nu)]/\Gamma(\Sigma^+ \rightarrow n \pi^+) = (4 \pm 3) \times 10^{-5}.$$

* Work partially supported by the Bundesministerium für Wissenschaftliche Forschung.

** National Science Foundation Senior Post Doctoral Fellow on leave of absence from the University of California, Berkeley.

It should be pointed out that in bubble chamber experiments the radiative background simulating a muonic decay is not negligible. Up to now 0.1 event of this type should have been found in all these experiments.

1. Introduction

During the past few years a number of experiments has been performed to search for the presence of $\Delta S = -\Delta Q$ transitions in weak interactions. The present theoretical description of semileptonic interactions hadron $A \rightarrow$ hadron $B +$ lepton $l +$ neutrino ν considers a phenomenological Lagrangian of the type

$$\mathcal{L}_{\text{weak}} = \frac{G}{\sqrt{2}} (I^\mu_A I^\mu_B + J^\mu_A J^\mu_B) + \mathcal{L}_{\text{non-lept.}}$$

in which the leptonic current is of the form

$$I^\mu_A = \bar{\nu} \gamma^\mu (1 + \gamma_5) \nu + \bar{\nu} \gamma^\mu (1 + \gamma_5) \nu$$

and the hadron current is assumed to be of the simple form

$$J^\mu_A = \cos \theta (J^1_A + i J^5_A) + \sin \theta (J^2_A + i J^3_A)$$

the latter being a member of an $SU(3)$ octet of currents. An octet of currents has the properties $\Delta I = \frac{1}{2}$ for $\Delta S = 1$, $|\Delta S| < 2$, and $\Delta S = \Delta Q$. If $\Delta S = -\Delta Q$ transitions would exist, first one would expect the presence of $\Delta I = \frac{1}{2}$ currents and second one would have to understand the observed absence of $\Delta S = 2$ transitions. The $\Delta S = \Delta Q$ selection rule has been tested experimentally in three reactions. The following 90% confidence limits have been placed on the $\Delta S = \Delta Q$ rates.

$$\frac{\Gamma (\Sigma^+ \rightarrow l^+ n \nu_e)}{\Gamma (\Sigma^- \rightarrow l^- n \nu_e)} < 0.10$$

$$\frac{\Gamma (K^+ \rightarrow \pi^+ \pi^- \nu_e)}{\Gamma (K^+ \rightarrow \pi^+ \pi^- e^- \nu_e)} < 0.02$$
