Hyperfine-Structure Measurements on Dy161 and Dy163

W. EBENHÖH*, V. J. EHLE**, and J. FERCH***

I. Physikalisches Institut der Universität Heidelberg

Received November 9, 1966

In an atomic beam magnetic resonance experiment the hyperfine interaction constants A and B of the 5I_8 groundstate of Dy161 and Dy163 were found to be

Dy161: $A = -(115.8 \pm 1)$ MHz, $B = (1102 \pm 15)$ MHz,

Dy163: $A = (162.9 \pm 0.6)$ MHz, $B = (1150 \pm 20)$ MHz.

Using an effective value for $\langle r^{-3} \rangle$, the magnetic moments and electric quadrupole moments of the Dy161 and Dy163 nuclei were calculated to be

Dy161: $\mu_I = -(0.47 \pm 0.09)$ n.m.,

Dy163: $\mu_I = (0.66 \pm 0.13)$ n.m.,

$Q = (2.36 \pm 0.4)$ barns, $Q = (2.46 \pm 0.4)$ barns.

A. Introduction

The electronic g-factor of the ground state of the Dy I-spectrum was determined by CABEZAS et al. to be $g_J = 1.2414 (3)$ and by SMITH and SPALDING to be $g_J = 1.24166 (17)$ on the assumption that the ground state configuration is $4f^{10} 6s^2$ with the HUND'S-rule ground state 5I_8. By taking into account SCHWINGR, spin-orbit, relativistic and diamagnetic corrections JUDD and LINDGREN arrived at a theoretical value of $g_J = 1.2414$ for the same state. From the good agreement between the experimental and theoretical value one deduces a 5I_8-ground state.

By the method of optical spectroscopy MURAKAWA made the first measurement of the nuclear spins of the two odd-A Dysprosium isotopes Dy161 and Dy163 (natural abundances 18.9% and 25% respectively) and found them both to be $7/2$. But paramagnetic resonance measurements by COOKE and PARK yielded a nuclear spin of $I = 5/2$ for the two isotopes. This result was verified by subsequent measurements of PARK and later...
by SMITH and SPALDING7, who determined the nuclear spins via the method of atomic beams. From his results Park ascertains the hyperfine-structure constants \(A \) and \(B \) of the \(\text{Dy}^{3+} \)-ions in a crystal-field and the nuclear moments. He obtains

\[
\text{Dy}^{161}: \quad \mu_I = -(0.37 \pm 0.04) \text{ n.m.,} \quad \text{Dy}^{163}: \quad \mu_I = (0.51 \pm 0.06) \text{ n.m.,}
\]

\[
Q = (1.1 \pm 0.4) \text{ barns,} \quad Q = (1.3 \pm 0.4) \text{ barns}
\]

using BLEANEY'S value8 for \(\langle r^{-3} \rangle (\text{Dy}^{3+}) \).

For the nuclear quadrupole moment of \(\text{Dy}^{161} \) there are measurements by HEYDENBURG and PIPER9 with Coulomb-excitation. They obtain \(Q(\text{Dy}^{161}) = 3 \) barns. Measurements with Mössbauer-effect by BAUMINGER et al.10 yielded a quadrupole moment \(Q(\text{Dy}^{161}) = 2.0 \) barns. No similar measurements exist for \(\text{Dy}^{163} \).

Since the magnetic moments had been determined only from measurements on ions in crystal-fields, fields which by their very nature give rise to complications not present for measurements on free atoms, it appeared worthwhile to undertake a new determination of these moments with the help of the atomic beam method. Because of the large discrepancies between the measured quadrupole moments of \(\text{Dy}^{161} \) a new investigation of these moments for both isotopes was deemed to be very desirable.

\section*{B. Relevant Hyperfine Structure Theory}

The atomic groundstate term of Dysprosium is a \(4f^{10} 6s^{2} 5I \)-multiplet and the state with the lowest energy within the multiplet has the quantum number \(J = 8 \). Fig. 1 and 2 show the hfs-splittings of the \(5I_8 \)-groundstates in dependence on the external magnetic field.

Neglecting the external magnetic field, the energy of the hfs-states is given in first order of perturbation theory by the diagonal matrix elements11,12

\[
W^0_F = \sum_k (-1)^{I+J+F+k} \langle I \parallel T^{(k)} \parallel I \rangle \langle J \parallel T^{(k)} \parallel J \rangle \bar{W} \begin{pmatrix} I \\ J \\ F \end{pmatrix}.
\]

\(T^{(k)} \) is a tensor operator of rank \(k \) which operates in the space of the electronic coordinates only. \(T^{(k)} \) operates on the coordinates of the nucleons in the same manner.