Note on Calculating Energy Values of Rotationally Hindered Linear Molecules

P. KURI and P. SAUER
Physikalisches Institut der Universität Freiburg i. Br.

Received April 4, 1966

The variational principle based on an integral equation equivalent to the Schrödinger equation is employed to calculate energy levels of Devonshire's model.

In the preceding paper*, henceforth cited as I, the Ritz-Galerkin method based on the Schrödinger equation of Devonshire's model was used to calculate the lowest-lying energy states of the rigid dumb-bell in an external field of octahedral symmetry. A similar variational technique was applied to a corresponding integral equation. Energy levels of the symmetry type T_{2g} were evaluated in this way and are compared with results of I to have a test of the effectiveness of the integral equation method. The technique concerned has extensively been exploited for energy band calculations 1 in solid state physics and is known as the Kohn-Rostoker method.

The Schrödinger equation of the system

$$B \cdot \left(\frac{\mathbf{q}^2}{\hbar^2} + V(\mathbf{q}) \right) \psi = B \cdot E \psi,$$

(1)

V being the Devonshire potential

$$-2 \cdot \sqrt{\frac{4\pi}{21}} K X^4_4,$$

is transformed into an integral equation by means of the Green's function

$$G_E(\mathbf{q}, \mathbf{q'}) = \sum_{l,m} \frac{Y^*_{l,m}(\mathbf{q}) Y_{l,m}(\mathbf{q'})}{l(l+1)-E} = \sum_{d,\kappa, l,v} \frac{X^{d\kappa}_{l,v}(\mathbf{q}) X^{d\kappa}_{l,v}(\mathbf{q'})}{l(l+1)-E},$$

(2)

that satisfies

$$\left(\frac{\mathbf{q}^2}{\hbar^2} - E \right) G_E(\mathbf{q}, \mathbf{q'}) = \delta(\mathbf{q}, \mathbf{q'}).$$

(3)

The resulting integral equation

$$\psi(\mathbf{q}) + \int G_E(\mathbf{q}, \mathbf{q'}) V(\mathbf{q'}) d \mathbf{q'} = 0$$

(4)

* The notation used in this paper was taken over from the preceding one.

Note on Calculating Energy Values of Rotationally Hindered Linear Molecules

can be derived from the variational principle

\[\delta \left[\int_0^\infty \varphi(\Omega) V(\Omega) \varphi(\Omega) \, d\Omega + \right. \\
\left. \int_0^\infty \varphi(\Omega) V(\Omega) G_E(\Omega, \Omega') V(\Omega') \varphi(\Omega') \, d\Omega \, d\Omega' \right] = 0. \]

Expanding the energy eigenfunction \(\varphi \) in terms of the complete set of symmetry-adapted angular momentum eigenfunctions,

\[\varphi = \sum_{D, \kappa, l, v} c_{l, v}^{D, \kappa} X_{l, v}^{D, \kappa}, \]

the variational principle (5) yields a determinantal condition for the energy eigenvalues. The determinant is of infinite rank, but it can be factorized with respect to the symmetry type of the energy levels:

\[\prod_D \det \left(V_{l, v, l', v'} + \sum_{l'', v''} \frac{V_{l, v, l'', v''} V_{l', v', l'', v''}}{l''(l'' + 1) - E} \right) = 0, \]

\[V_{l, v, l', v'} = \int X_{l, v}^{D, \kappa}(\Omega) V(\Omega) X_{l', v'}^{D, \kappa}(\Omega) \, d\Omega, \]

\(V_{l, v, l', v'} \) being as \(H_{l, \kappa} \) in (5) of \(I \) independent of the row label \(\kappa \), since \(V \) transforms according to the totally symmetric representation \(A_{1g} \) of \(O_h \). If the constituent matrix elements \(V_{l, v, l', v'} \) are not available, the term

\[\prod_D \det \left(V_{l, v, l', v'} + \sum_{l'', v''} \frac{V_{l, v, l'', v''} V_{l', v', l'', v''}}{l''(l'' + 1) - E} \right) = 0, \]

in (7) can be calculated by means of the first form of the Green’s function in (2),

\[\sum_{l', v'} V_{l, v, l', v'}^{D} = \int_{l, v} X_{l, v}^{D, \kappa}(\Omega) V(\Omega) Y_{l', m}(\Omega) Y_{l', m}(\Omega') V(\Omega') X_{l', v'}^{D, \kappa}(\Omega') \, d\Omega \, d\Omega'. \]

Performing the same approximation for the energy eigenfunction as in I, i.e. replacing (6) by a finite series expansion,

\[\varphi = \sum_{l=0}^{12} \sum_{D, \kappa, v} c_{l, v}^{D, \kappa} X_{l, v}^{D, \kappa}, \]

that takes angular momentum quantum numbers \(l \) up to 12 only into account, condition (7) is truncated to a product of finite determinants, each one allowing approximate solutions for the lowest energy eigenvalues of a definite symmetry type. Though the factorization of the determinant saves immense computational work, much effort still is