Accumulation and Lethal Effect of Tritium (Tritiated Water) in *Rhodopseudomonas spheroides* Under Light-Anaerobic and Dark-Aerobic Conditions

T. Inomata

Department of Radiation Research, Tohoku University School of Medicine, Sendai, Miyagi 980, Japan

Summary. Nonsulfur purple photosynthetic bacteria, *Rhodopseudomonas spheroides* cells were cultured in medium containing tritiated water (THO) under the light-anaerobic and dark-aerobic conditions. The experimental R value defined as specific activity ratio of organic bound 3H to THO in medium was 0.49 and 0.48 for the light-anaerobically grown cells and the dark-aerobically grown cells, respectively. From the relation of R value to number of weight doubling of the cells (n), ratio of experimental R to theoretical R, i.e., $(2^n-1)/2^n$ derived by assuming no isotope effect, was 0.51 and 0.49 on an average for the light-anaerobically grown cells and the dark-aerobically grown cells, respectively. 3H-incorporation from THO-medium into the light-anaerobic nongrowing cells was affected by the light intensity and suppressed by adding HgCl$_2$, KCN, and 2,4-dinitrophenol as well as 3H-labelling in the dark-aerobic nongrowing cells was affected by oxygen tension and suppressed by adding these metabolic inhibitors. From the fractionation of the lyophilized cells by modified Schneider method, the distribution of exchangeable 3H in cold acid-soluble and ether-ethanol-soluble fractions and nonexchangeable 3H bound to small molecules and macromolecules was 7.4/25.3/67.3 in the growing cells cultured anaerobically in the THO-medium up to late exponential phase in the light. The distribution in the nongrowing cells incubated anaerobically with the THO-medium for 18 h in the light of 300 and 3,000 lux was 82.1/8.4/9.5 and 58.2/19.2/22.6, respectively. These distributions of 3H were changed with growth phase and/or incubation time. On the biological effect of 3H-THO for the cells stocked at -196°C to accumulate 3H-decays, the dark-aerobic nongrowing cells labelled with THO were rather radiosensitive than the dark-aerobically and light-anaerobically grown cells cultured in the THO-medium. The killing efficiencies, i.e., the probability that a single disintegration would be lethal, ranged from $1/200$ to $1/275$ for the above three kinds of cells labelled with THO. The killing efficiencies for *R. spheroides* labelled with THO were similar to that for radiosensitive strain CB13 and wild strain Hfr of *Escherichia coli* labelled with 3H-thymidine and stored at -196°C.
1. Introduction

Tritiated water (THO) is the major tritium (3H) compound released from nuclear plants into the environment [22]. It is well known that when THO was administered to various organisms, 3H was incorporated not only into the intracellular water, but also into the organic materials of the organisms [5, 13]. Since non-sulfur purple photosynthetic bacteria, *Rhodopseudomonas spheroides* cells can grow aerobically in the dark or anaerobically in the light, this bacterium is a suitable organism for studying the metabolism of THO in vivo. In our previous study using the dark-aerobically grown cells [8, 9], specific activity ratio of organic bound 3H to environmental THO (experimental R value) was maximum 0.5 and 0.2 in the growing and nongrowing cells, respectively. Further, average experimental R value of nonexchangeable 3H in the nucleic acids and these mononucleotides in the growing cells ranged from 0.4–0.6 like the R value of the total cell materials. In the present study, the metabolism of 3H-THO in the light-anaerobically grown cells and the dark-aerobically grown cells was compared by the observations of bacterial growth in the medium containing THO (THO-medium), the distribution of bound 3H in organic materials and the effect of metabolic inhibitors for 3H-incorporation. The results indicated that the extent of the bacterial growth inhibition became larger as THO-concentration of medium was higher. Further, 3H-incorporation from THO into the light-anaerobic nongrowing cells was affected by light intensity and suppressed by adding HgCl$_2$, KCN, and 2,4-dinitrophenol (DNP) as well as 3H-incorporation in the dark-aerobic nongrowing cells was affected by oxygen tension and inhibited by adding these metabolic inhibitors. From the fractionation of lyophilized cells, it was shown that in the light-anaerobically grown cells 92.6% of total bound 3H incorporated into the growing cells was nonexchangeable form but in the nongrowing cells 58.2–82.1% of total bound 3H was exchangeable form. Our studies on the biological effect of 3H-THO for the cells stored at -196°C indicated that the dark-aerobic nongrowing cells labelled with THO were rather radiosensitive than both the light-anaerobically grown cells and the dark-aerobically grown cells cultured in the THO-medium.

2. Materials and Methods

2.1. Bacterial Strain and Cultivation Condition

R. spheroides originally obtained from Van Niel was grown anaerobically in the light and aerobically in the dark in medium S of Lascelles [14] as described previously [6, 7].

For observations of the effect of THO on bacterial growth and 3H-incorporation under growth condition, about 10^8 cells grown light-anaerobically was inoculated in 10 ml of the THO-medium in a test tube with silicone screw cap of 10 ml capacity and cultivated semi-anaerobically at 30°C in the light of 3,000 lux.