AERODYNAMIC CHARACTERISTICS OF V-SHAPED WINGS WITH SHOCK WAVES DETACHED FROM LEADING EDGES AT HYPERSONIC SPEEDS

N. A. Ostapenko

The direct problem of hypersonic flow past a V-shaped wing with a shock wave detached from the leading edges is solved. The reduced normal force coefficient and the lift-drag (L/D) ratio are calculated for a configuration with a lower part in the shape of a V-wing and a streamwise upper part.

1. Consider a symmetrical flow past a V-wing with aperture angle γ and apex angle β (Fig. 1)

\[b = \tan \beta \cos \gamma, \quad h = \tan \beta \sin \gamma, \quad \gamma_1 = \frac{1}{2} (\pi - \gamma) \] (1.1)

Let the function $y = y(x, z)$ represent the shape of the shock wave. Using the conservation laws, we can obtain the following expressions for the velocity components u, v, w along the x, y and z axes, the pressure p and the density ρ behind the shock front divided by the free-stream velocity, double ram pressure and density, respectively:

\[u' = \cos \alpha - f' y_x', \quad v' = -\sin \alpha + f', \quad w' = -f' y_z' \] (1.2)

\[f' = (1 - \varepsilon) \frac{\sin \alpha + \cos \alpha y_x'^2}{1 + y_x'^2 + y_z'^2}, \quad p' = f' \left(\sin \alpha + \cos \alpha y_x' \right) + \frac{1}{\chi M^2}, \quad \rho' = \frac{1}{\varepsilon} \]

Here, χ is the specific heat ratio and M is the free-stream Mach number. The small parameter ε, which is that of thin shock layer theory and equal to the ratio of the densities before and behind the shock wave, is defined by the following relation:

\[\varepsilon = \frac{\chi - 1}{\chi + 1} \left[1 + \frac{2}{(\chi - 1) M^2 \sin^2 \alpha} \right] \]

We shall assume that $(\chi - 1)M^2 \sin^2 \alpha \geq O(1)$ and $\cos \alpha = O(1)$. Then, in accordance with (1.2), $u' = O(1)$, $v' = O(\varepsilon)$, $y_x' = O(\varepsilon \tan \alpha)$. We also have an estimate for the scale length of the conical vorticity flow in the compressed layer for uniform flow behind the plane shock attached to the leading edge: $z/x = O(\varepsilon \tan \alpha)$. As follows from this estimate, the transition from the flow regime with a shock attached to the wing leading edges to that with a detached shock takes place when (see Fig. 1)

\[b = O (\sqrt{\varepsilon} \tan \alpha) \] (1.3)

Moreover, the thin shock layer theory determines the limits within which h may vary (Fig. 1)

\[h \leq O (\varepsilon \tan \alpha) \] (1.4)

Then, in accordance with (1.1), (1.3), and (1.4), we can obtain the following estimate: $\gamma_1 \leq O(\varepsilon)$. Let us assume that the shock is attached to the leading edges, this corresponding to the relation $y_x' = h - by_x'$. Then, using the impermeability condition on the wing surface $v^2/w^2 = h/b$ and taking (1.2) into account, we get

\[y_x'^2 + \left(\frac{b \cot \alpha - \frac{h}{b}}{b} \right) y_x' + \varepsilon - h \cot \alpha = 0 \] (1.5)

where only the main terms of the expansion have been kept.

It follows from (1.5) that flow with a detached shock wave will occur when the following inequality holds:

0015-4628/93/2804-0545$12.50 © 1994 Plenum Publishing Corporation
The quantities C and Ω in (1.6) are similarity parameters determining the perturbed flow over low-aspect-ratio wings (1.3). The first of these parameters was derived in [2] for a flat delta wing, while the second was introduced in [3] for $\gamma_1 < 0$ (1.1). If the inequality (1.6) is not satisfied, then for a plane shock attached to the leading edge we have:

$$
-2 < \Omega + C < 2, \quad \Omega = \frac{b}{\sqrt{\varepsilon} \tan \alpha}, \quad C = \frac{h}{\sqrt{\varepsilon} b}
$$

(1.6)

In (1.7) the plus sign corresponds to a weak shock at the edge, and the minus sign to a strong one. We have $\gamma_2^* = 0$ when $\Omega C = 1$ (cf. (1.5)). In this case we have the design flow conditions, with a shock wave in the plane of the V-wing's leading edges [4, 5].

Figure 2 presents some domains in the plane of the parameters C, Ω which correspond to various conditions of flow past a V-wing. The range of the functions C and Ω on which, according to (1.6), flows with a shock wave detached from the leading edges may occur, is bounded by the straight lines 1 and 2. The hyperbola BAD corresponds to the design flow conditions, its branch AB relating to a weak family of shocks attached to the leading edges and the branch AD to a strong one. Flow regimes with a shock detached from the leading edges occur on the range of functions C and Ω bounded by the straight line 2 and the curve AD [6].

The diagrammatic representation of the various flow regimes over V-wings in the C, Ω-plane (Fig. 2, $C > 0$, $\Omega > 0$) is the hypersonic analogy of the mapping of flow regimes over wings of given geometry in the plane of the parameters M and α [7]. The solution of the direct problem of hypersonic flow past a flat low-aspect-ratio delta wing with a shock wave detached from the leading edges (Fig. 2, $C=0$, $0<\Omega<2$) was constructed and calculated for small Ω in [2]. An algorithm of the numerical solution of the system of functional equations [2] was given in [8] for all Ω, $0<\Omega<2$. The theory of [2] was extended to the case of a wing with aperture angle $\gamma > \pi$ ($C < 0$, diamond-shaped wings) in [3] and to that of a wing with $\gamma < \pi$ in [9]. However, the method used in [3] and [9] to calculate these flows is valid only for very small Ω.

Later, the theory of [2] was used to construct a solution of the problem of hypersonic flow past a wing with a shock wave attached to the leading edges [10–12]. However, though a solution in closed form can be obtained for the inverse problem of flow past a wing [10], when solving the direct problem of flow past a triangular plate [11, 12] unremovable singularities arise in the outer solution (using the terminology of [13]).