On Functions and Measures whose Fourier Transforms are Functions

P. SZEPTYCKI

1. Introduction

The theory of integral transformations in the form developed in [1] yields in the special case of the Fourier transformation some interesting information concerning classes of functions whose Fourier transforms are functions. Some results in this direction were outlined in [3] in the case of one dimensional Fourier transformation; we shall develop here the ideas of that paper in the case of the Fourier transformation on \mathbb{R}^n and on some locally compact abelian groups.

To make this paper self-contained we have to begin with a brief outline of relevant concepts and results introduced in [1].

Let (X, μ), (Y, ν) be two totally σ-finite measure spaces and denote by $\mathcal{M} = \mathcal{M}(X, \mu)$, $\mathcal{N} = \mathcal{M}(Y, \nu)$ the linear spaces of (equivalence classes of) measurable finite almost everywhere complex valued functions on X and Y, provided with the topologies of convergence in measure on all subsets of finite measure. \mathcal{M} and \mathcal{N} are complete linear metric spaces. It is convenient to choose once and for all some specific metrics defining the topologies in \mathcal{M} and \mathcal{N}; we define the translation invariant metrics q_x, q_y on \mathcal{M} and \mathcal{N} by the formulas

$$q_x(u) = \int_X \frac{|u(x)|}{1 + |u(x)|} \phi(x) \, d\mu(x), \quad q_y(v) = \int_Y \frac{|v(y)|}{1 + |v(y)|} \psi(y) \, d\nu(y), \quad u \in \mathcal{M}, \ v \in \mathcal{N},$$

where $\phi, \psi > 0$ are fixed functions, $\phi \in \mathcal{M}$, $\psi \in \mathcal{N}$ such that

$$\int_X \phi \, d\mu = \int_Y \psi \, d\nu = 1.$$

For a measurable complex valued function $K(x, y)$ on the product space $(X \times Y, \mu \times \nu)$ the integral transformation $K : \mathcal{M} \to \mathcal{N}$ with the kernel $K(x, y)$ is given by the formula

$$(Ku)(y) = \int_X K(x, y) u(x) \, d\mu(x).$$

K is well defined on the linear subspace of \mathcal{M} of all functions u such that

$$\int_X |K(x, y)| |u(x)| \, d\mu(x) < \infty \quad \text{a.e.}$$

This subspace of \mathcal{M} is referred to as the proper domain of K and is denoted by \mathcal{D}_K.

We assume in what follows that K is non singular, i.e. there exists $u \in \mathcal{D}_K$ such that $u \neq 0$ a.e.
We introduce in \mathcal{M} a partial ordering setting $u \preceq v$ if and only if $|u(x)| \leq |v(x)|$ a.e.

If A is a linear metric space of measurable functions continuously contained in \mathcal{M} then K is said to be A-semi regular (A-s.r.) if i) $\mathcal{D}_K \cap A$ is a dense subspace of A, ii) the transformation $K: \mathcal{D}_K \cap A \to \mathcal{M}$ is continuous if $\mathcal{D}_K \cap A$ is provided with the topology of A. If K is A-s.r. then K can be extended (by continuity) to a continuous linear transformation of A into \mathcal{M}, which we shall denote by K_A and refer to as A-extension of K.

A is an FL-subspace of \mathcal{M} if A is a complete metric space continuously contained in \mathcal{M} and the conditions $u \in A$, $v \in \mathcal{M}$, $v \preceq u$, imply $v \in A$.

The maximal FL-subspace of \mathcal{M} to which a given integral transformation can be extended by continuity is obtained by closing the proper domain \mathcal{D}_K of K in \mathcal{M} provided with the metric

$$
\hat{g}_K(u) = g_X(u) + \sup \{g_Y(Kv); v \in \mathcal{D}_K, v \preceq u\}.
$$

(4)

The relevant properties of this metric are given in the following.

Theorem 1. (i) \hat{g}_K is a complete translation invariant metric on \mathcal{M}. (ii) The closure $\tilde{\mathcal{D}}_K$ of \mathcal{D}_K in \mathcal{M} with the metric \hat{g}_K is an FL-subspace of \mathcal{M}. (iii) K is $\tilde{\mathcal{D}}_K$-semi regular, $\tilde{\mathcal{D}}_K$ being provided with the metric \hat{g}_K. (iv) Denote by \tilde{K} the $\tilde{\mathcal{D}}_K$-extension of K. If A is an FL-subspace of \mathcal{M} such that K is A-s.r. then A is continuously contained in $\tilde{\mathcal{D}}_K$ (with the metric \hat{g}_K) and K_A is identical with the restriction of \tilde{K} to A.

The space $\tilde{\mathcal{D}}_K$ is called the extended domain of K. The following is a necessary condition for a function $u \in \mathcal{M}$ to belong to $\tilde{\mathcal{D}}_K$.

Proposition 1. If $u \in \tilde{\mathcal{D}}_K$ and $X = \bigcup_{k=1}^{\infty} X_k$ is a partition of X then for every sequence $\{u_k\} \subset \mathcal{D}_K$ the condition $u_k \preceq \chi_{X_k} u$, $k = 1, 2, ...$ implies

$$
\sum_{k=1}^{\infty} |(Ku_k)(y)|^2 < \infty \quad \text{for almost every } y.
$$

(5)

In the proposition above and in what follows χ_E denotes the characteristic function of the set E.

In the case when X and Y are topological spaces and μ, ν are measures defined on σ-fields of Borel subsets of X and Y we have the following proposition.

Proposition 2. If X is locally compact, Y satisfies the Lindelöf condition and $K(x, y)$ is continuous on $X \times Y$ then for every $u \in \tilde{\mathcal{D}}_K$ and compact $C \subset X$ we have $\chi_C u \in \tilde{\mathcal{D}}_K$.

2. Spaces $\mathcal{B}^{(2)}(\mathbb{R}^n)$ and $\mathcal{L}^{(2)}(\mathbb{R}^n)$

Let X be a set and S be a σ-field of subsets of X. If $P = \{X_k\}_{k=1}^{\infty}$, $X_k \in S$ is a partition of X, p is a number, $1 \leq p < \infty$ and μ is a complex valued measure on S then we define

$$
\|\mu\|_{p,p} = \left[\sum_{k=1}^{\infty} (|\mu| (X_k))^{p} \right]^{1/p}.
$$

(6)