A New Generalization of the Schauder Fixed Point Theorem

FELIX E. BROWDER

Introduction

Let X be a Banach space, K a compact convex subset of X. The well-known fixed point theorem of SCHAUDER [15] states that every continuous mapping f of K into K has a fixed point. The generalization by TYCHONOFF [16] extends this result to the case in which X is replaced by a general locally convex topological vector space E. TYCHONOFF's theorem contains as a special case the earlier result in SCHAUDER [15] asserting the existence of a fixed point for each weakly continuous self-mapping f of a weakly compact convex subset C of a Banach space X.

It is our object in the present paper to prove a new generalization of the SCHAUDER and TYCHONOFF fixed point theorems. This generalization includes the SCHAUDER and TYCHONOFF theorems and has two interesting general features:

(1) It does not seem to be obtainable by any easy direct method from the corresponding result in the finite dimensional case;

(2) It follows from an argument which uses the conjugate space E^* of the locally convex topological vector space E.

We distinguish the results discussed here from previous generalizations of the SCHAUDER theorem published by the writer (BROWDER [1], [2], [3], [4], [5]) which center around the concept of asymptotic fixed point theorems and of deformations of non-compact mappings.

Before proceeding to the statement of our general results, we introduce the following definition:

Definition 1. Let C be a closed convex subset of a locally convex topological vector space E. Then a point x of C is said to lie in $\delta(C)$ if there exists a finite dimensional subspace F of E such that x lies in the boundary of $C \cap F$.

Our basic results are contained in the following two theorems:

Theorem 1. Let E be a locally convex topological vector space, K a compact convex subset of E, f a continuous mapping of K into E. Suppose that for each u in $\delta(K)$, there exists an element v of K and a real number λ with $\lambda > 0$, (both depending upon u), such that

$$ f(u) - u = \lambda (v - u). $$
Then \(f \) has a fixed point in \(K \).

Theorem 2. Let \(E \) be a locally convex topological vector space, \(K \) a compact convex subset of \(E \), \(f \) a continuous mapping of \(K \) into \(E \). Suppose that for each \(u \) in \(\delta(K) \), there exists an element \(v \) of \(K \) and a real number \(\lambda \) with \(\lambda < 0 \), (both depending upon \(u \)), such that

\[
f(u) - u = \lambda(v - u).
\]

Then \(f \) has a fixed point in \(K \).

Remark 1. If \(f \) satisfies the hypotheses of the Schauder or Tychonoff theorem so that \(f \) maps \(K \) into \(K \), we may take \(v = f(u) \) for every \(u \) and set \(\lambda = 1 \), and obtain the Tychonoff fixed point theorem as a special case of Theorem 1. On the other hand, in either Theorem 1 or 2, if we can choose \(v \) for the equation (1) for every \(u \) in \(K \) and if \(v \) can be chosen continuously in \(u \), then we may apply the Tychonoff theorem to the mapping \(v = S(u) \) and obtain a fixed point for \(S \) in \(K \) which is also a fixed point for \(f \) in \(K \). However, there is nothing in the hypothesis of Theorems 1 and 2 which insures that such a continuous choice of \(v \) is possible.

Remark 2. For a restricted class of convex sets in Banach spaces, the result of Theorem 2 for outward mappings \(f \) was obtained in a long direct argument by B. Halpern in his U.C.L.A. Ph.D. thesis in 1965 (unpublished).

Remark 3. Special cases of Theorems 1 and 2 which are important for application are those in which \(E \) is a Banach space \(X \) in either its strong, its weak, or, for \(E = X^* \), its weak* topologies.

Theorems 1 and 2 are obtained by a specialization of a simple result concerning mappings of \(E \) into its conjugate space \(E^* \). Here \(E^* \) is the topological vector space of continuous linear functionals on \(E \) topologized in the usual way (Kôthe [13]), and we denote the pairing between \(w \) in \(E^* \) and \(u \) in \(E \) by \((w, u) \).

This result is the following:

Theorem 3. Let \(E \) be a locally convex topological vector space, \(K \) a compact convex subset of \(E \), \(T \) a continuous mapping of \(K \) into \(E^* \). Then there exists an element \(u_0 \) of \(K \) such that

\[
(T(u_0), u - u_0) \geq 0
\]

for all \(u \) in \(K \).

As a convenient specialization of Theorem 3, we have:

Theorem 4. Let \(E \) be a locally convex topological vector space, \(K \) a compact convex subset of \(E \), \(f \) a continuous mapping of \(K \) into \(E \). Let \(R \) be a continuous mapping of the set \((I - f)(K) \) into \(E \), \((I = \text{the identity map}) \). Then there exists an element \(u_0 \) of \(K \) such that

\[
(R(u_0 - f(u_0)), u - u_0) \geq 0
\]

for all \(u \) in \(K \).

In Section 1, we give the simple proof of Theorem 3 using the Brouwer fixed point theorem. Because of its simplicity, we give it here for the sake of completeness although it is a special case of Proposition 1 of Browder [9], [10]. For the case of finite-dimensional spaces, the result was first obtained by a