It is proved that every symmetric function in k-valued logic of n arguments can be realized by a formula in any basis, the complexity of the formula not exceeding n^C, where C is a constant depending on the basis. It is shown that in the case $k = 2$, $C \leq 4.93$ for all bases.

Symmetric functions in the algebra of logic were studied by Korobkov [1] and Lupanov [2] from the point of view of the complexity of their realizations by H-schemes, or, what is the same thing, by formulae in the basis $\{\lor, \land, \lnot\}$. In the terminology of [2] (we recall that S_n denotes the set of all symmetric functions of n arguments and $L_\pi(\mathcal{E}_n) = \max_{\pi \in \mathcal{E}_n} L_\pi (\pi)$) the fundamental result of Korobkov can be formulated in the form

$$L_n(\mathcal{E}_n) \leq n^{1 + \varepsilon_n} \log n, \quad \varepsilon_n \to 0,$$

where ε_n is a constant, and it will be shown that $\varepsilon_n \to 0$.

It will be proved in this note that

$$L_n(\mathcal{E}_n) \leq n^c,$$

where c is a constant, and it will be shown that $c \leq 4.93$. Comparing this bound with the lower bound obtained in [3] for the linear function $g_n \in S_n$, we have

$$n^2 \leq L_n(\mathcal{E}_n) \leq n^4 g_n.$$

In view of the results of [4], similar bounds hold for almost all symmetric functions $S_n(x_1, \ldots, x_n)$ depending on n arguments:

$$n^3 \leq L_\pi(S_n) \leq n^{4.05}.$$

For monotonic $S_n^{m_1, \ldots, m_n}(x_1, \ldots, x_n)$ and elementary $S_n^{m_1}(x_1, \ldots, x_n)$ symmetric functions somewhat stronger upper bounds can be obtained:

$$L_n(S_n^{m_1, \ldots, m_n}) \leq n^{4.43},$$

$$L_n(S_n^{m_1}) \leq n^{4.82}.$$
Comparing these with the lower bounds in [4], for \(m \approx \frac{n}{2} \) we have

\[
\begin{align*}
\frac{1}{4} n^2 & \leq L_n(S_n^{m=\ldots=n}) \leq n^{k_{lo}}, \\
\frac{1}{2} n^2 & \leq L_n(S_n^{m=\ldots=n}) \leq n^{k_{hi}}.
\end{align*}
\]

The generalization of (1) presents no difficulties. Let \(\mathcal{S}_n^k \) be the set of all symmetric functions of \(k \)-valued logic of \(n \) arguments and \(L_B(\mathcal{S}_n^k) \) the least number of symbols for variables sufficient to realize any function \(f \in \mathcal{S}_n^k \) by a formula in an arbitrary basis \(B \). Then

\[
L_B(\mathcal{S}_n^k) \leq n^c,
\]

where \(C \) is a constant depending on \(k \) and \(B \), where, for \(k = 2 \), in view of the results of Subbotovskaya (Muchnik) [5], for all bases the constant \(C \) has the same upper bound as in (1). In other words, if \(k = 2 \), \(C \leq 4.93 \).

The bound (1) (without the improvement in the constant \(c \)) is quite simple to deduce from Lupanov's construction [6] for the realization of an arbitrary symmetric function in the algebra of logic of \(n \) arguments by a scheme of functional elements in any finite basis. We only need to verify that such a scheme has depth of order \(\log n \), after which it remains to "develop" the scheme into a formula and estimate the complexity of the formula in terms of the depth.

To prove (4) we have to generalize Lupanov's construction. For arbitrary \(k \) the scheme is constructed from \(k-1 \) blocks computing, respectively, the number of units, pairs, ... and digits, equal to \(k-1 \) in the set of values of the arguments and a further block which produces the value of the function from the results of these computations. This scheme also has depth of order \(\log n \) and so the complexity of the corresponding formula has the upper bound \(n^C \).

We turn to the detailed proof of bounds (1) (with \(c = 4.93 \)), (2), and (3). First we note that, in view of the equation

\[
S_n^m(x_1, \ldots, x_n) = S_n^{m-1}(x_1, \ldots, x_n) \& S_n^{m+1}(x_1, \ldots, x_n)
\]

the bound (3) is a direct corollary of the bound (2). Further, since any symmetric function of \(n \) arguments can be obtained by the substitution of constants from a symmetric function of any greater number of arguments, it is sufficient to prove (1), for example, for all \(n \) of the form \(n = 2^k-1 \), where \(k \) is an integer. Exactly the same holds for monotonic symmetric functions. In addition, any monotonic symmetric function of \(n \) arguments can be obtained by substituting constants from the function \(S_{n+1}^{2^k-1}(x_1, \ldots, x_{2n+1}) \).

Hence, it is sufficient to prove the bound (2) for \(n = 2^k-1 \) and only for \(S_{2n+1}(x_1, \ldots, x_n) \).

Thus, let

\[
n = 2^k - 1.
\]

In the same way as in [6], we can represent an arbitrary symmetric function \(S_n(x_1, \ldots, x_n) \) in the form

\[
S_n(x_1, \ldots, x_n) = f(y_1, \ldots, y_k),
\]

where \(y_1, \ldots, y_k \) are binary digits satisfying the condition:

\[
\sum_{j=1}^{n} x_j = \sum_{i=1}^{k} y_i 2^{k-1}
\]

(both sums are arithmetic!) and \(f \) is a function in the algebra of logic. Clearly, each digit \(y_i = y_i(x_1, \ldots, x_n) \) (1 ≤ \(i \) ≤ \(k \)) is a symmetric function, where

\[
y_i(x_1, \ldots, x_n) = S_{2n+1}^{(n+1)/2, \ldots, n}(x_1, \ldots, x_n).
\]