
EXTREMAL PROPERTIES OF QUADRATIC DIFFERENTIALS WITH STRIP-SHAPED DOMAINS IN THE STRUCTURE OF THE TRAJECTORIES

G. V. Kuz'mina

One considers the modulus problem for a family \mathcal{H} of homotopic classes $\{H_i\}$, in the extended complex plane \hat{C}, of the following types. The classes H_i consist of closed Jordan curves, homotopic to appropriate nondegenerate contours or point curves, and also of arcs with endpoints in (distinct or coinciding) distinguished points in \hat{C}. One establishes the relation of the indicated extremal metric problem and the problem on the extremal decomposition of \hat{C} in the family $\mathcal{D} = \mathcal{D}_\mathcal{H}$ of systems of mutually nonoverlapping domains $\{D_i\}$, associated with the family \mathcal{H} of the classes $\{H_i\}$. The results of this paper complement a previous theorem of the author [Moduli of families of curves and quadratic differentials. Trudy Mat. Inst. Akad. Nauk SSSR, Vol. 139, 1980].

INTRODUCTION

1°. A series of investigations of a general character, which have started with Jenkins' paper [1], have been devoted to the extremal properties of quadratic differentials with closed trajectories; regarding these questions, see, for example, [2] and the recent monograph by Strebel [3]. In particular, one has shown [2, Chap. 0] that the extremal metric problem $P_\mathcal{H} = P_\mathcal{H}(a_1, \ldots, a_{j+m})$ for the family \mathcal{H} of homotopic classes $\{H_i\}_{i=1}^{j+m}$ of closed curves in the extended plane \hat{C}, where H_i, $i = 1, \ldots, j$, are classes of curves homotopic to nondegenerate contours, H_{j+l}, $l = 1, \ldots, m$, are classes of curves homotopic to point curves in the distinguished points on \hat{C}, is directly connected with the so-called problem on the extremal decomposition of \hat{C} into the family $\mathcal{D}_\mathcal{H}$ of all systems of nonoverlapping domains $\{D_i\}_{i=1}^{j+m}$, associated with family \mathcal{H} of classes H_i. By the latter we mean the problem of the maximum of the functional

$$
\sum_{i=1}^j \sigma_i^2 \mathcal{M}(D_i) + \sum_{l=1}^m \sigma_{j+l}^2 \mathcal{M}(D_{j+l}, b_l)
$$

in the family $\mathcal{D}_\mathcal{H}$; here $\mathcal{M}(D_i)$ is the modulus of the doubly connected domain D_i, associated with the class H_i (i.e., the modulus of the domain D_i relative to the family of curves separating its boundary components), $\mathcal{M}(D_{j+l}, b_l)$ is the reduced modulus of the simply connected domain D_{j+l} relative to the point $b_l \in D_{j+l}$, σ_i and σ_{j+l} are the positive parameters occurring in the definition of the modulus problem $P_\mathcal{H}$. The relationship between the modulus problem $P_\mathcal{H}$ and the indicated extremal problem in the family $\mathcal{D}_\mathcal{H}$ consists in the following. The extremal metric of the modulus problem $P_\mathcal{H}$ is the Q-metric $|Q(z)|^2|dz|$, where $Q(z)dz^2$ is a quadratic differential, regular on \hat{C}, with the exclusion of the poles in the distinguished points in \hat{C}, and the critical trajectories of this same differential determine the extremal decomposition of \hat{C}: the system $\{D_i^*\}_{i=1}^{j+m}$ of annular and circular domains of the differential $Q(z)dz^2$ yields the maximum of the sum (1) in the family $\mathcal{D}_\mathcal{H}$.

2°. In this paper, the mentioned general principle is extended to the case when the family \mathcal{H} contains the homotopic classes H_{j+m+1}, \ldots, p, of arcs, having limiting endpoints

at the distinguished point in \(\mathbb{C} \). The domains associated with the classes of such arcs are the biangles, i.e., simply connected domains with two distinguished boundary elements. With such an extension of the family \(\mathcal{H} \), new aspects arise. Thus, in a number of parameters, defining the modulus problem \(\mathcal{P}_\mathcal{H} \) in this case and the related problem of extremal decomposition, there occurs a system of real numbers \(\{ \gamma_s \}^p_{s=1} \), which are lower bounds for the so-called reduced arc lengths from the classes \(H_{j+m+s} \) in the admissible \(p \)-metric. As shown by simple considerations, in contrast with other parameters, the system \(\{ \gamma_s \} \) cannot be selected in a completely arbitrary manner. However, for all those systems of values of the parameters for which there exists an associated quadratic differential \(Q(z)dz^2 \), there exists a simple relation between the extremal metric problem and the problem of the extremal decomposition: the metric \(|Q(z)|^2dz \) is extremal in the modulus problem \(\mathcal{P}_\mathcal{H} \) and the system \(\{ \gamma_s \}^p_{s=1} \) of annular, circular, and strip domains of the differential \((2z)^n \) has the following extremal property.

In the admissible family \(\mathcal{D}_\mathcal{H} \) of systems of domains \(\{ \mathcal{D}_i \}_{i=1}^1 \), associated with the family \(\mathcal{H} = \{ H_{j+m+s} \}^p_{j=1} \), we have the inequality

\[
\sum_{i=1}^1 \alpha_i^2 [\mathcal{M}(\mathcal{D}_{i}) - \mathcal{M}(\mathcal{D}_j)] + \sum_{k=1}^m \alpha_{j+k}^2 [\mathcal{M}(\mathcal{D}_{j+k}) - \mathcal{M}(\mathcal{D}_{i+k})] + \\
+ \sum_{s=1}^p \gamma_s^2 [\mathcal{M}(\mathcal{D}_{j+m+s}) - \mathcal{M}(\mathcal{D}_{i+m+s})] \frac{\mathcal{M}(\mathcal{D}_{j+m+s})}{\mathcal{M}(\mathcal{D}_{i+m+s})} > 0 ;
\]

here \(\mathcal{M}(\mathcal{D}_{j+m+s}) \) and \(\mathcal{M}(\mathcal{D}_{i+m+s}) \) are the reduced moduli of the biangles \(\mathcal{D}_{j+m+s} \) and \(\mathcal{D}_{i+m+s} \) with respect to their distinguished boundary elements.

We mention that some of the considered questions are directly related with Emel'yanov's paper [4], which will be mentioned again in the sequel.

Section 1 of the present paper is devoted to the definitions of the reduced modulus of a biangle relative to the corresponding classes of curves and to the extremal metric questions related with these definitions.

Section 2 is devoted to the proof of the fundamental result of the paper.

1. Definition of the Reduced Modulus of a Biangle and Related Extremal Metric Problems

1°. Let \(D \) be a simply connected domain in \(\mathbb{C} \) with two distinguished boundary elements, whose supports are the distinct or the coinciding points \(b_1 \) and \(b_2 \). For the sake of definiteness, we shall assume that \(b_1, b_2 \) are finite; the definitions given below can be carried over in an obvious manner, for example, to the case \(b_1 = \infty \). We shall assume that in the neighborhoods of the points \(b_k, k = 1, 2 \), the boundary arcs of the domain \(D \) behave similarly to the trajectories of the quadratic differential with expansion

\[
Q(z)dz^2 = A(z-b_k)^2(I + O(z-b_k))dz^2, \quad A_k > 0. \tag{2}
\]

Namely, assume that the following condition (\(\mathcal{A} \)) holds: for the mapping \(w = g(z) \) of the domain \(D \) onto the strip \(\Pi = \{ u : h_u < u < h_u \} \), normalized by the conditions \(\text{Re} g(b_k) = -\infty, \text{Re} g(b_2) = +\infty \), in the neighborhoods of the points \(b_k, k = 1, 2 \), we have the equality

\[
q(z) = \sqrt{A_k} \{ (-1)^{k-1} \log(z-b_k) + \bar{q}_k(z) \}, \tag{3}
\]

where \(\bar{q}_k(z) \) is a regular function.

Let \(\varepsilon_k, k = 1, 2 \), be sufficiently small positive numbers. Then the intersection of the domain \(D \) with the circumference \(C(b_k, \varepsilon_k) = \{ z : |z-b_k| = \varepsilon_k \} \) consists of a unique arc, denoted by \(S_k(\varepsilon_k) \). Let \(K(b_k, \varepsilon_k) = \{ z : |z-b_k| < \varepsilon_k \} \), let \(K(b_k, \varepsilon_k) \) be the closure of \(K(b_k, \varepsilon_k) \), and let \(D(\varepsilon_k, \varepsilon_k) = D \setminus K(b_k, \varepsilon_k) \). Thus, \(D(\varepsilon_k, \varepsilon_k) \) is a quadrangle with opposite sides \(S_k(\varepsilon_k), k = 1, 2 \). Let \(\gamma_k(\varepsilon_k) \) be the