Polarization Operators for $s = 1$

By

H. HØGAASEN

(Received November 9, 1963)

Spin projection operators, useful in the relativistic Hamiltonian description of vector particles are given.

A characteristic feature of relativistic equations is that the spin operator does not commute with the Hamiltonian. It is therefore of interest to find operators commuting with H that removes the $2s+1$ fold degeneracy after the charge and momentum is quantized. For $s = \frac{1}{2}$ there is a quite extensive literature on the subject1,2, and we wish to give some operators corresponding to the one given by STECH3 and KOPPE4 for electrons in the case of $s = 1$ particles.

To simplify the procedure we take the Duffin-Kemmer-Petiau equation in its reduced form5

\[
H = (\tau_3 + i \tau_1) - \frac{1}{2m} \bar{p}^2 - \frac{i}{m} (s \cdot \bar{p})^2 + \tau_3 \bar{m} = \frac{1}{2m} [\tau_3 (E^2 + m^2) - i \tau_1 \bar{p}^2 Q],
\]

where

\[
E^2 = m^2 + \bar{p}^2, \quad Q = 2 \left(\frac{s \cdot \bar{p}}{\bar{p}} \right)^2 - 1,
\]

\(\tau_1, \tau_2, \tau_3\) is a set of Pauli matrices, \(s_i\) are the spin matrices for \(s = 1\) and \(\tau_3\) means the outer product \(\tau \otimes s\). From the property $H^2 = E^2$ it is then easy to show that a unitary U (with respect to the metric τ_3)6,7 can be found that leads to two "uncoupled" equations with well defined charge. With

\[
U = \frac{1}{2 \sqrt{E \bar{m}}} \left[E + m + \tau_2 (E - m) Q \right] U^\dagger = \frac{1}{2 \sqrt{E \bar{m}}} \left[E + m - \tau_2 (E - m) Q \right]
\]

3 STECH, B.: Z. Physik 144, 216 (1956).
we get
\[H^T = U H U^\dagger = \tau_3 \left[p^2 + m^2 \right]^{\frac{1}{2}} \quad \text{and} \quad P_\pm = \frac{1}{2} (1 \pm \tau_3) \]
where \(P_\pm \) is the usual charge projection operator.

In this new representation the spin operator \(s \) as well as \(\tau_3 s = s \) are constants of motion, as well as all linear combinations (also containing \(s \) operators) of these. \(s n \) and \(\tau_3 (s n) \) when \(n \) is an arbitrary unit vector can be quantized and is an operator inside the manifolds of positive and negative charge states separately.

In the original representation these operators have the form
\[\Sigma_1 \cdot n = U^\dagger \tau_3 (s n) U \quad \text{and} \quad \Sigma_2 \cdot n = U^\dagger (s n) U \]
where \(\Sigma_2 \) is the operator corresponding to the Foldy-Wouthuysen mean spin, \(\Sigma_1 \) the operator defined by Stech and
\[\frac{1}{4E m} \left\{ (E+m)^2 s n - (E-m)^2 Q(s n) Q \right\} = \Sigma_3 n \]
corresponds to Koppe's operator. We write the two first out explicitly:
\[\Sigma_1 \cdot n = \frac{1}{4E m} \left[\tau_3 \left\{ (E+m)^2 (s n) + (E-m)^2 Q(s n) Q \right\} - i \tau_1 p^2 \left((s n) Q + Q(s n) \right) \right], \]
\[\Sigma_2 \cdot n = \frac{1}{4E m} \left[(E+m)^2 (s n) - (E-m)^2 Q(s n) Q + \tau_2 p^2 \left((s n) Q - Q(s n) \right) \right] \]
The algebra of the operators \(\Sigma_1 \) and \(\Sigma_2 \) is
\[\Sigma_i \Sigma_j \Sigma_k + \Sigma_k \Sigma_j \Sigma_i = \delta_{ij} \Sigma_k + \delta_{jk} \Sigma_i, \]
\[(\Sigma_1 n)^2 = (\Sigma_2 n)^2 = \frac{1}{4m E} \left\{ (E+m)^2 (s n)^2 - (E-m)^2 Q(s n)^2 Q + p^2 \tau_2 [(s n)^2 Q - Q(s n)^2] \right\} \]
\[= (s n)^2 - \frac{i}{2m E} \left[(E-m)^2 Q - p^2 \tau_2 \right] \cdot (\hat{p})(s n \times \hat{p}) \]
where \(\hat{p} = p/|p| \).
\[[[(\Sigma_1)_i, (\Sigma_1)_j]] = i \varepsilon_{ijk} \frac{H}{E} (\Sigma_1)_k, \]
\[[[(\Sigma_2)_i, (\Sigma_2)_j]] = i \varepsilon_{ijk} (\Sigma_2)_k. \]
It is easily seen that \((\Sigma n)^3 = \Sigma n \) and that the unit element in the space over which the spin operators operate can be written as the sum of three
