A New Determination of the Capture Ratio

\[r_c = \frac{\Sigma^- p \rightarrow \Sigma^0 n}{(\Sigma^- p \rightarrow \Sigma^0 n) + (\Sigma^- p \rightarrow A^0 n)} , \]

the \(\Lambda^0 \)-Lifetime and the \(\Sigma^- - \Lambda^0 \) Mass Difference

V. HEPP and H. SCHLEICH

Institut für Hochenergiephysik, Universität Heidelberg

Received May 13, 1968

The two \(\Sigma^- \) reactions at rest \(\Sigma^- p \rightarrow \Sigma^0 n \) and \(\Sigma^- p \rightarrow \Lambda^0 n \) have been studied in order to determine the capture ratio

\[r_c = \frac{\Sigma^- p \rightarrow \Sigma^0 n}{(\Sigma^- p \rightarrow \Sigma^0 n) + (\Sigma^- p \rightarrow \Lambda^0 n)} , \]

the \(\Lambda^0 \)-lifetime and the \(\Sigma^- - \Lambda^0 \) mass difference. The following results were obtained:

\[r_c = 0.474 \pm 0.016 \]
\[\tau_{\Lambda^0} = (2.47 \pm 0.08) \times 10^{-10} \text{ sec} \]
\[M_{\Sigma^-} - M_{\Lambda^0} = 81.64 \pm 0.09 \text{ MeV}/c^2. \]

The \(\Sigma^- \)-mass was determined from the range of the stopping \(\Sigma^- \)-hyperons, \(M_{\Sigma^-} = 1197.19 \pm 0.32 \text{ MeV}/c^2. \)

The two capture reactions:

\(\Sigma^- + p \rightarrow \Sigma^0 + n \), \hspace{1cm} (1)
\(\Sigma^- + p \rightarrow \Lambda^0 + n \) \hspace{1cm} (2)

were studied in order to measure the following quantities:

(i) the capture ratio

\[r_c = \frac{\Sigma^- p \rightarrow \Sigma^0 n}{(\Sigma^- p \rightarrow \Sigma^0 n) + (\Sigma^- p \rightarrow \Lambda^0 n)} , \]

(ii) the \(\Lambda^0 \)-lifetime \(\tau_{\Lambda^0} \),

(iii) the \(\Sigma^- - \Lambda^0 \) mass difference.

The \(\Sigma^- \)-hyperons were produced by stopping \(K^- \)-mesons in the 81 cm Saclay Hydrogen Bubble Chamber at the CERN PS\(^1\). The film

was scanned for Σ^-p-interactions with a visible Λ^0-decay. Only events where the Σ^--hyperon came to rest were considered. Results on Σ^-p-interactions in flight have been published in a previous paper.

1. The Capture Ratio

$$r_c = \frac{\Sigma^-p \rightarrow \Sigma^0n}{(\Sigma^-p \rightarrow \Sigma^0n) + (\Sigma^-p \rightarrow \Lambda^0n)}$$

The kinetic energy of Λ^0-hyperons produced from reaction (1) $\Sigma^-p|_{\text{lat rest}} \rightarrow \Sigma^0n, \Sigma^0 \rightarrow \Lambda^0\gamma$ is limited between 0.16 and 7.8 MeV, whereas in the two body process $\Sigma^-p|_{\text{lat rest}} \rightarrow \Lambda^0n$ the kinetic energy of the Λ^0-hyperons is fixed at 36.9 MeV. Therefore the two reactions can easily be separated.

In order to exclude background events it was necessary to apply the following selection criteria:

a) the interaction volume inside the bubble chamber was restricted to:

\[-23.0 \leq X \leq 31.5 \text{ cm}\]
\[-11.5 \leq Y \leq 11.5 \text{ cm}\]
\[-30.6 \leq Z \leq -1.0 \text{ cm}\],

b) the confidence level for the hypothesis $K^-p|_{\text{lat rest}} \rightarrow \Sigma^-\pi^+$ had to be greater than 1%.

c) the projected angle between K^- and Σ^- direction was limited between: $10^\circ \leq \hat{\Sigma} \leq 170^\circ$.

d) the dip-angle of the Σ^--track had to be less than 60°.

e) the length of the track was restricted to $0.95 \leq L_{\Sigma^-} \leq 1.15 \text{ cm}$.

In order to avoid systematical losses of Λ^0-decays the following conditions were imposed:

a) the projected path length of the Λ^0-hyperons had to be limited to $0.2 \leq (L_{\Lambda^0})_{\text{proj}} \leq 6.0 \text{ cm}$; the spatial path length was required to be also less than 6.0 cm.

b) The projected length of the Λ^0-decay proton had to exceed 1.5 mm.

c) The projected angle between Σ^- and Λ^0-direction had to be less than 150°.

d) The projected angle between pion and proton direction of the Λ^0-decay had to be limited to $10^\circ \leq \hat{(p, \pi^-)}_{\text{proj}} \leq 170^\circ$.

e) The Λ^0-momentum had to be greater than 30 MeV/c.