Almost Perfect Binary Functions

Philippe Langevin
G.E.C.T. Université de Toulon, F-83130 La Garde, France

Received October 30, 1991; revised version August 5, 1992

Abstract. The almost perfect binary sequences have been defined in [6] as \((-1, +1)\)-periodic sequences such that all their out-of-phase autocorrelation coefficients are zero except one. In the preceding paper, the study of the almost perfect binary sequences is done by means of the ring \(\mathbb{F}_2[X]/(X^n - 1)\). Here, the arithmetic of cyclotomic fields enables us to solve open problems and questions like: structure and existence of these sequences.

Keywords: Correlation, Sequences, Fourier transform

In what follows, we identify the periodic sequences of length \(n\) with the mapping defined over \(\mathbb{Z}/n\mathbb{Z}\), so that we use the notation \(i \rightarrow s(i)\) for the sequence \(s_0, s_1, \ldots, s_{n-1}\). By “binary” function (or sequence), we understand a map with codomain \([-1, +1] \subset \mathbb{C}\). For any trouble with notations, one may refer to section 8.

1. Almost Perfect Function

Let \(n\) be an integer. A map \(f\) from \(\mathbb{Z}/n\mathbb{Z}\) into \(\mathbb{C}\) is said to be \(D\)-perfect, if:

\[f \times f(z) = 0, \quad \forall z = 1, 2, \ldots, D - 1 \]

where \(f \times f(z) = \sum_{x \in \mathbb{Z}/n\mathbb{Z}} f(x)f(x + z)\) is the autocorrelation function of \(f\).

The \(n\)-perfect functions whose codomain is the set of \(n\)th-root of unity, are the generalized bent functions of dimension one – see [4] – and can be obtained via Gauss sums. The set of \(n\)-perfect binary functions is in one to one correspondance with the set of the Hadamard circulant matrix, and thus – see [1, Chap. 4] – when \(4 < n \leq 12100\), there are no \(n\)-perfect binary functions, so that the greatest \(D\) for which one may find \(D\)-perfect functions becomes \(n/2\) – see [6]. These functions are called almost perfect (binary) functions.
Proposition 1. If \(f \) is an almost perfect function of length \(n \) then

(i) \(n \) is a multiple of \(4 \)

(ii) \(f \times f(z) = \begin{cases} n, & \text{if } z = 0; \\ \hat{f}(0)^2 - n, & \text{if } z = n/2; \\ 0, & \text{else.} \end{cases} \)

where \(\hat{f}(0) \) is the Fourier transform, see further, of \(f \) at \(0 \) and must be even.

Proof. See [6, Proposition 1 and Corollary 6]. \(\square \)

The almost perfect functions with \(f \times f(n/2) \leq 0 \) are of a great interest for synchronization problems. When \(n \geq 8 \), one only knows the experimental results of J. Wolfmann which all have \(\hat{f}(0) \) equal to 2 or 4.

2. Algebraic Preliminaries

Let \(\zeta_n \) be a primitive \(n \)-th root of unity in \(\mathbb{C} \). The ring of integers of \(\mathbb{Q}(\zeta_n) \) is \(\mathbb{Z} [\zeta_n] \) – see [2]. If \(p \) is a prime, we denote by \(G_n(p) \) the decomposition group of \(p \), and by \(e_n(p), f_n(p), g_n(p) \) the index, the degree, and the order of ramification of \(p \). The group \((\mathbb{Z}/n\mathbb{Z})^* \) is isomorphic to \(\text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \) by means of \(q \mapsto \sigma_q \), where \(\sigma_q \) is defined by the action \(\zeta_n \mapsto \zeta_n^q \). The ideal \((p) \) is equal to \(\prod_{i=1}^{e_n(p)} P_i^{f_n(p)} \), where the \(P_i \) are distinct prime ideals containing \((p) \) fixed by \(G_n(p) \). \(f_n(p) \) is the common degree of the algebraic extension \(\mathbb{Z} [\zeta_n]/P_i \) of \(\mathbb{Z}/p\mathbb{Z} \) and the equality \(e_n(p)f_n(p)g_n(p) = \phi(n) \) holds. Moreover, if \(p \) does not divide \(n \) then \(e_n(p) = 1 \) and \(G_n(p) \) is cyclic generated by \(\%_p \).

Lemma 2. Let \(a \) be a positive integer whose decomposition in prime factors is

\[
a = \prod_{\mathfrak{p}|a} p^{v_{\mathfrak{p}}(a)}
\]

If there exists \(p \) such that \(\sigma^{-1} \in G_n(p) \) and \(e_n(p)r_p \) is odd, then the equation \(z \bar{z} = a \) has no solution in \(\mathbb{Z} [\zeta_n] \).

Proof. Let \(z \) an algebraic integer such that \(z \bar{z} = a \) and \(p \) a prime ideal containing \((p) \). The valuation \(v_{\mathfrak{p}}(z) \) of \((z) \) is equal to \(v_{\mathfrak{p}}(\bar{z}) \), thus the \(\pi \)-adic valuation of \(a \), that is \(e_n(p)r_p \), must be even. \(\square \)

Lemma 3. Let \(a \) be a positive integer, \(z \in \mathbb{Z} [\zeta_n] \) and \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \) such that \(z \bar{z} = a \) and \(\sigma \in \bigcap_{\mathfrak{p}|a} G(p) \) then there exists a root of unity \(\lambda \) such that \(\sigma(z) = \lambda z \).

Proof. Let \(z \) an algebraic integer such that \(z \bar{z} = a \). The principal ideal \((z) \) is a product of prime ideals containing \(a \). Each of them is fixed by \(\sigma \), thus \((z) \) and \((\sigma(z)) \) are equal. There exists an unit \(\lambda \) such that \(\sigma(z) = \lambda z \). On an other hand,