CONCERNING ALGEBRAIC INDEPENDENCE
OF SOME TRANSCENDENTAL NUMBERS

A. A. Shmelev

Given the three numbers \(a_1^\beta, a_2^\beta, \) and \(\ln a_2/\ln a_1 \), where \(a_1 \) and \(a_2 \) are algebraic numbers whose logarithms are linearly independent in a rational field and \(\beta \) is a quadratic irrationality, it is shown that they are not all expressible algebraically in terms of one of them.

In 1934, A. O. Gel'fond [1] established the transcendence of numbers of the form \(a^\beta \), where \(a \neq 0, 1 \) and is algebraic and \(\beta \) is an algebraic irrationality.

Let \(\alpha_1, \ldots, \alpha_s \) be transcendental numbers and let \(Q(x_1, \ldots, x_s) \) be a polynomial which is irreducible in a rational field and which has rational integer coefficients, the highest common divisor of which is unity. We shall say that the numbers \(\alpha_1, \ldots, \alpha_s \) are algebraically independent in a rational field if there is no polynomial \(Q \) for which \(Q(\alpha_1, \ldots, \alpha_s) = 0 \). We shall say also that the numbers \(\alpha_1, \ldots, \alpha_s \) are expressible algebraically in terms of one of them if there exist \(s \) equations

\[
Q_k(x_k, \alpha_i) = 0, \quad k = 1, \ldots, s, \tag{1}
\]

where all the \(Q_k(x, \alpha_i) \neq 0 \).

In 1948-1949, Gel'fond [2, 3] developed a new analytic method which he applied successfully to various questions relating to the transcendence of numbers. In this paper Gel'fond's method is used to prove a theorem concerning the algebraic independence of certain classes of numbers.

THEOREM. Let \(\alpha_1, \alpha_2 \) be algebraic numbers whose logarithms are linearly independent in a rational field; let \(\beta \) be a quadratic irrationality, and let \(\eta = \ln a_1/\ln a_2 \). Then, the three numbers \(\eta, \alpha_1^\beta, \alpha_2^\beta \) are not expressible algebraically in terms of one of them.

The transcendence of each of these numbers is assumed to be already known [1].

LEMMA 1 [4]. If \(a_{kn} \) \((1 \leq k \leq r, 1 \leq n \leq s, r \geq 2s) \) are rational integers, \(|a_{kn}| \leq a \), then it is possible to find rational integers \(x_1, \ldots, x_r, \sum_{k=1}^{r} x_k^2 > 0 \), such that

\[
\sum_{k=1}^{r} a_{kn} x_k = 0 \quad (n = 1, \ldots, s), \tag{2}
\]

wherein \(|x_k| \leq 3a_r \).

LEMMA 2 [3]. Let \(\sigma > 0, \sigma_0 > 1, \sigma \sigma_0 > \epsilon > 0 \) be given, where, for \(x > x_0 > 0, \sigma \sigma_0 \) and \(\sigma_0 \) are monotonic and grow unboundedly with \(x \), and \(\sigma \sigma_0 (x) \geq \sigma (x + 1) \). Then, if for an arbitrary integer \(N > N_0 > 0 \), there exists a polynomial \(P(x) \neq 0 \) with rational integer coefficients of height \(H \) and of degree \(n \), satisfying the condition

\[
|P(x)| \leq e^{\epsilon N H(N)}, \quad \max \{|n, \ln H| \leq \epsilon \sigma (N), \tag{3}
\]

the number \(\sigma \) must be algebraic.

LEMMA 3 [3]. Let \(p, q, p < q \) be positive integers, \(\epsilon > 0 \), and let \(\gamma \) be fixed; assume also that the numbers \(\alpha_1, \ldots, \alpha_q \), as well as the numbers \(\beta_1, \ldots, \beta_r \), are mutually distinct and ordered according to decreasing moduli, i.e., \(|\alpha_k| \leq |\alpha_{k+1}| \) and \(|\beta_k| \leq |\beta_{k+1}| \). We put \(|\alpha_q| = \alpha, |\beta_r| = \beta \) and assume the existence of constants \(\gamma_0 > 0, \gamma_1 > 0, \gamma_0 + \gamma_1 < 1 \), such that \(\alpha < (pq)^{\gamma_1}, \beta < (pq)^{\gamma_0} \). We assume also the

existence of a constant γ_2 such that the inequality

$$\prod_{k=1}^{q} \left| x_k - a_i \right| > e^{-\gamma_2 \log q}, \quad \left| a_1 - a_k \right| > e^{-\gamma_2 \log q},$$

$$1 \leq i \leq q, \quad 1 \leq k \leq q$$
is satisfied. Then, if the function $f(z)$ has the form

$$f(z) = \sum_{q=0}^{P-1} \sum_{j=0}^{p-1} A_{k+j} e^{\pi i j},$$

where the numbers A_{k+j} are in totality distinct from zero, at least one of the numbers

$$f^{(j)}(z), \quad 0 \leq s \leq r - 1, \quad 1 \leq k \leq r,$$

$$r_1 r > [\lambda pq], \quad \lambda = \frac{1 + \gamma_1 + 2\gamma_2 + \varepsilon}{1 - \gamma_1 - \gamma_2},$$
is distinct from zero for sufficiently large pq.

Proof of the Theorem. Assume that the theorem is false; then there exists a transcendental number ω such that

$$P_1(\omega, \eta) = 0, \quad P_2(\omega, a_1^\eta) = 0, \quad P_3(\omega, a_1^\eta) = 0,$$

$$P_0(z, y) = P(z, y), \quad P(z, y), \quad P(z, y) \neq 0,$$

where $P_1(x, y), P_2(x, y), P_3(x, y)$ are irreducible polynomials in two independent variables with rational integer coefficients. Let $R_0 = R(\omega)$ be the extension of the field of rational numbers obtained by adjoining to it the transcendental number ω. Let the polynomial $P(z, y)$ be of degree μ in y; denote the roots of the equation $P_0(\omega, y) = 0$ by $\alpha_1, \ldots, \alpha_{\mu}$. We indicate by $R_1 = R_0(\omega_1)$ the smallest algebraic extension of the field R_0 which contains the numbers $\alpha_1, \ldots, \alpha_{\mu}$; by ν, the degree of this field; by ω_1, its primitive element; and by $\omega_2, \ldots, \omega_\nu$ the conjugates of ω_1 in the field R_0. If

$$P_0(z, y) = \sum_{k=0}^{m_1} \sum_{l=0}^{m_2} a_k z^k y^l,$$

then let

$$T(\omega) = \sum_{k=0}^{m_1} a_{km} \omega^k, \quad S_i = T\alpha_i \quad (i = 1, \ldots, \mu).$$

It is evident that the S_i are the integers of the field R_1; therefore,

$$S_i = \sum_{l=0}^{\nu-1} P_{ik}(\omega) \omega_1^k,$$

where the $P_{ik}(\omega)$ are certain polynomials of ω with rational integer coefficients. Let the largest of the degrees of the polynomials $P_{ik}(\omega)$ be m_2. Since S_i are the integers of the field R_1, then

$$(S_i)^t = \sum_{l=0}^{\nu-1} B_{ikl} \omega_1^k \quad (i = 1, \ldots, \mu),$$

where B_{ikl} are the polynomials in ω with rational integer coefficients. Considering the numbers conjugate to S_i with respect to the field R_0, we obtain

$$(S_i)^t = \sum_{l=0}^{\nu-1} B_{ikl} \omega_1^k \quad (r = 1, \ldots, \nu),$$

where $S_i = S_i^t$. We consider now the relation (9) as a system of linear equations for determining the B_{ikl}. Since the determinant of the system of equations (9) is a Vandermonde determinant, then

$$| B_{i,k,l} | \leq e^{\gamma_2}, \quad \gamma_2 > 0,$$