Phase Transition of First Order in Superconductors at H_{c1}

S. Großmann and Ch. Wissel
Fachbereich Physik der Philipps-Universität Marburg

Received February 24, 1972

The Ginzburg-Landau-Functional is extended by nonlinear terms. The corresponding Ginzburg-Landau equations are solved by a method analogous to Abrikosov's theory near H_{c2}. But here it yields the magnetization as a function of H_{ex} in the whole vortex phase presuming that κ is near $1/\sqrt{2}$. At H_{c1} a jump in the magnetization is found.

1. Introduction

Recent experiments$^{1-6}$ on type II superconductors with κ near $1/\sqrt{2}$ have shown a phase transition of first order at H_{c1}. Changing the external field H_{ex}, the magnetic induction B shows a jump B_0 depending on temperature and κ. B_0 seems to tend to zero with $T \rightarrow T_c$ faster than H_{c1} and H_{c2}. Therefore the Ginzburg-Landau equations are not expected to yield the jump7. To explain it, one would extend the Ginzburg-Landau theory, for example either include the next terms $\sim T_c-T$ as Tewordt did8 (see also9), or extend phenomenologically the London equation10 or rely on the full Gorkov equations from the beginning11,12.

Some authors$^{7-11}$ have calculated the structure of an isolated flux line, taking into account higher orders of the nonlocality. But just as the vortex structure arises from the nonlinear character of the Ginzburg-Landau equations in addition to the nonlocal, the nonlinear extension of the Ginzburg-Landau functional must also be expected to influence the penetration of the flux at H_{c1}.

Our aim is to verify this suggestion. Disregarding the solution for an isolated vortex line (so we cannot say anything about a possible attraction), we solve the Ginzburg-Landau equations, extended by nonlinear terms, with a method13 analogous to Abrikosov's theory14 near H_{c_2}. This suggests itself and becomes possible because with the measured discontinuous penetration of the flux for κ near $1/\sqrt{2}$ the condition $|\psi|^2 \leq |\psi_0|^2$, necessary for Abrikosov's method, holds true in the whole vortex region $H_{c_1} \leq H \leq H_{c_2}$. The latter condition also restricts the range of the κ values, for which our results are valid.

As Abrikosov's theory makes essential use of the fact that the physical free energy is minimal, we first write down a generalized Ginzburg-Landau functional (Sec. 2). In essence it is Tewordt's functional but renormalized to be stable. In Sec. 3 we solve the field equations. As the solution we find H_{c_1}/H_{c_2} as function of κ (Sec. 4). Moreover we determine the jump B_0/H_{c_1}. Finally, the latter is calculated in the spirit of the presented method but using earlier results of Eilenberger, based on the Gorkov equations.

2. Extension of the Free Energy

As a possible extension of the Ginzburg-Landau functional, one at first thinks of Tewordt's expansion. It is, however, unstable and thus cannot be used as a suitable starting point for minimum principles. On the other hand it should show the typical properties regarding the order of the nonlinearity. Therefore we start with the form of the functional obtained by the asymptotic expansion up to the first order in T_c-T, but we take into account the influence of the higher orders by a renormalization of the values of the constants.

Thus we take the following free energy:

\[
\mathcal{F} = \mathcal{F}_N + \int d^3 \vec{r} \left\{ -\tilde{\alpha} |\psi|^2 + \frac{\tilde{\beta}}{2} |\psi|^4
+ \left(\frac{\hbar}{2} \right) \left(\frac{2e}{m^*} A \right) \psi^2 \left(\tilde{\gamma} + \tilde{\sigma} |\psi|^2 \right) + \tilde{\xi} (\frac{\hbar}{2} \frac{H^2}{8\pi}) \right\}.
\]

(1)

The quantities $\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}$ are renormalized constants corresponding to the usual expansion coefficients. Neumann and Tewordt8 found $\tilde{\alpha} - \alpha \sim \tilde{\beta} - \beta \sim \tilde{\gamma} - \gamma \sim \tilde{\xi} - \xi \sim T_c - T$. The quantities $\tilde{\sigma}$ and $\tilde{\xi}$ are the coefficients of the new terms. We have omitted the nonlocal term of higher order in Tewordt's functional8. Even without it, we find a transition of first order at H_{c_1}.

\begin{itemize}
 \item 13 Saint-James, D., Thomas, E.J., Sarma, G.: Type II superconductivity. Pergamon Press 1969.
 \item 14 Abrikosov, A.A.: Soviet Phys. JETP 5, 1174 (1957).
\end{itemize}