High Spin States in the Transitional Nucleus 156Er

H. Beuscher, W. F. Davidson, R. M. Lieder and C. Mayer-Börnicke

Institut für Kernphysik der Kernforschungsanlage Jülich

H. Ihle

Institut für Physikalische Chemie der Kernforschungsanlage Jülich

Received June 15, 1973

High-spin states in 156Er have been populated using the (α, 8n) and (^{16}O, 4n) reactions. In the ground state band a strong backbending effect was observed at $I^\pi = 12^+$. Four states of a second $K=0$ band with spins 9, 11, 13 and 15 were found. This second band depopulates completely into the 8^+ and 10^+ members of the ground state band. This is explained by the fact that the upper states of this second band are yrast states and that this band crosses the (gsb)-line at $I \simeq 11$.

1. Introduction

It is now experimentally well established that in the ground-state rotational bands (gsb) of some doubly-even rare earth nuclei in the mass range $A = 158 - 168$ the nuclear moment of inertia θ increases dramatically as high-spin members of the gsb are reached [1–3]. Plots of the moment of inertia defined by

$$\frac{2\theta}{\hbar^2} = \frac{4I - 2}{E_I - E_{I-2}}$$

as a function of the square of the rotational frequency defined by

$$\hbar^2 \omega^2 = \frac{I^2 - I + 1}{(2I - 1)^2} [E_I - E_{I-2}]^2$$

result in "backbending" curves for many of these nuclei [4]. Here the quantity I denotes the spin of the initial state, and $[E_I - E_{I-2}]$ is the transition energy.

Of particular interest is the fact that the isotopes 162,160,158Er whose highest known gsb levels have spins of 20^+, 18^+ and 18^+ respectively [1, 3, 5], all show backbending behaviour. The degree of backbending increases with decreasing neutron number [4], which can be understood qualitatively from theoretical models based either on the Coriolis anti-pairing (CAP) effect [6–8], or alternatively, on that of Stephens and Simon [9, 10] in which the effect of the Coriolis decoupling of one (or
two) pairs of $i_{13/2}$ neutrons from the core are treated. The present investigation was initiated to find out whether this trend already established in 162,160,158Er is continued in the transitional nucleus 156Er.

An earlier study on 156Er conducted at Berkeley using 40Ar-induced reactions established the gsb as far as the 10^+ level [11, 12].

2. Experiments and Results

An 160Dy oxide target ($\approx 7 \text{ mg/cm}^2$), enriched to 96.6% on the mass separator facility at the KFA Jülich, was bombarded with an 108 MeV external α-particle beam from the Jülich isochronous cyclotron JULIC so that the final nucleus under investigation, namely 156Er, was produced via the (α, $8n$) reaction. The nuclei 157Er and 158Er were also produced in considerable amounts via the (α, $7n$) and (α, $6n$) reactions respectively. Using Ge (Li) spectrometers, in-beam measurements of γ-singles spectra, γ-γ coincidence spectra, γ-spectra time-related to the cyclotron beam bursts and γ-ray angular distributions were performed. Explicit details of the experimental techniques used have already been published [3].

Furthermore a study of the angular distribution of γ-rays following the 144Nd(16O, $4n$)156Er reaction was conducted on the cyclotron of the University of Louvain-La-Neuve. In this experiment a self-supporting metallic 144Nd target ($\approx 3.7 \text{ mg/cm}^2$) enriched to 97.5% was irradiated with 100 MeV oxygen ions. Since this reaction is more specific to produce the final nucleus 156Er than the (α, $8n$) reaction, considerably cleaner γ-spectra were obtained.

To establish the level scheme of 156Er γ-γ coincidences were studied. These γ-γ coincidence spectra were measured using a pair of large volume (60 cm^3 and 66 cm^3) Ge (Li) detectors and were event-mode recorded on magnetic tape. Coincidence spectra were obtained by successively setting gates on all γ-lines of interest. In addition to the five gsb γ-transitions in 156Er known previously, seven new γ-transitions appeared in the coincidence spectra. A comprehensive examination of the individual coincidence spectra gated with each of the twelve γ-rays was performed. In Fig. 1 a background-corrected summed coincidence spectrum is shown, where gates were simultaneously set on all the gsb transitions in 156Er up to the $10^+ \rightarrow 8^+$ transition. Taking into account all coincidence relationships and γ-intensities in each individual coincidence spectrum, the level scheme shown in Fig. 2 was constructed. In addition to the gsb in 156Er, a second band is apparent which depopulates into the gsb by means of two interband transitions.

In order to determine γ-ray multipolarities and to obtain thereby spin assignments, γ-ray angular distributions were measured using the (α, $8n$) and (16O, $4n$) reactions. In Jülich these measurements were simul-