The Radius of Convergence of Poincaré Series of Loop Spaces

Y. Felix and J.C. Thomas
F.N.R.S.-Inst. Math. U.C.L.-B 1348 Louvain la Neuve - Belgique -

Abstract. Let R_S (resp. R_A) be the radius of convergence of the Poincaré series of a loop space $\Omega(S)$ (resp. of the Betti-Poincaré series of a noetherian connected graded commutative algebra A over a field \mathbb{K} of characteristic zero).

If S is a finite 1-connected CW-complex, the rational homotopy Lie algebra of S is finite dimensional if and only if $R_S = 1$. Otherwise $R_S < 1$.

There is an easily computable upper bound (usually less than 1) for R_S if S is formal or coformal.

On the other hand $R_A = +\infty$ if and only if A is a polynomial algebra and $R_A = 1$ if and only if A is a complete intersection (Golod and Gulliksen conjecture). Otherwise $R_A < 1$ and the sequence $\dim \text{Tor}_p^H(\mathbb{K}, \mathbb{K})$ grows exponentially with p.

I. Introduction

I.1. Among the 1-connected topological spaces S, we distinguish two classes according to the dimension $\pi_*(S) \otimes \mathbb{Q}$. More precisely, S is elliptic if $\dim \pi_*(S) \otimes \mathbb{Q} < +\infty$ and hyperbolic if $\dim \pi_*(S) \otimes \mathbb{Q} = +\infty$.

I.2. Let R_S be the radius of convergence for Poincaré series of the loop space $\Omega(S)$. If S elliptic, $R_S = 1$ or $+\infty$. As a consequence of [4] and [10] we have the

Theorem (II.6). If $H^*(S; \mathbb{Q})$ is a noetherian algebra, S is hyperbolic if and only if $R_S < 1$.

It is moreover (II.8) easy to find a lower bound for R_S.

I.3. The next problem is to find, for a hyperbolic space S, an easily computable real number r, such that $R_S \leq r < 1$. The principal result of this paper is to find

AMS CLASSIFICATION (MOS 80) 55P62; 55M30; 55P35
such an r when S is formal. (Recall that a space S is formal if its rational-iziation S_0 has an automorphism ψ satisfying $\psi^*(x)=x^{[1]} \cdot x$ for each x belong-

\[
\text{Theorem (III.4). Let } S \text{ be a space which is both hyperbolic and formal, and such that, } \dim H^*(S; \mathbb{Q}) < + \infty. \text{ Then } R_S \leq r \text{ where } r = \inf \left\{ |z_i|, \text{ } z_i \text{ running through the zeros of the Poincaré polynomial of } S, \sum_{i=0}^{+\infty} \dim H^i(S; \mathbb{Q}) t^i \right\}.
\]

There follows

\[
\text{Corollary (III.6). If } S \text{ is a } (p-1)\text{-connected compact formal oriented } n\text{-manifold, then } R_S \leq \left(\frac{n}{p b_p} \right)^{1/p} \text{ where } b_p \text{ is the } p\text{th Betti number of } S.
\]

I.4. The result of Theorem III.4 holds also under a weaker assumption namely for spaces with a homotopical weight decomposition (III.1). In a dual setting we study spaces equipped with a homological weight decomposition and ob-
tain an upper bound for R_S. Such spaces include those which are cofiber of a map between suspensions (formula VI.8).

I.5. In our second main result, we apply the same techniques in algebra and give a proof of the Golod and Gulliksen conjecture [19] for graded connected algebras and of conjecture C_2 Avramov [3]. More precisely, as a corollary of Theorem IV.5 we obtain:

\[
\text{Theorem (IV.7). Let } H \text{ be a noetherian and connected graded commutative algebra over } \mathbb{K}. \text{ If } R_H \text{ denotes the radius of convergence of the Betti-Poincaré series}
\]

\[
P_H(t) = \sum_{p \geq 0} \dim \operatorname{Tor}_p^H(\mathbb{K}, \mathbb{K}) t^p
\]

there are only three possibilities:

\begin{enumerate}
 \item $R_H = + \infty$, in this case H is a polynomial algebra;
 \item $R_H = 1$, in this case H is a complete intersection and \[
 \dim \operatorname{Tor}_p^H(\mathbb{K}, \mathbb{K}) \leq K p^m
 \]
 for some fixed K and m;
 \item $R_H < 1$; in this case H is not a complete intersection, and there exists a constant $C > 1$ such that \[
 \dim \operatorname{Tor}_p^H(\mathbb{K}, \mathbb{K}) \geq C^p
 \]
 for all p.
\end{enumerate}

I.6. The paper is organised as follows:

\begin{enumerate}
 \item Introduction \hfill 257
 \item Radius of convergence of the Poincaré series \hfill 259
 \item Formal spaces and spaces equipped with a homotopical weight decomposition \hfill 261
 \item Poincaré series of a connected graded algebra \hfill 266
 \item Coformal spaces and spaces with a homological weight decomposition \hfill 269
\end{enumerate}