Investigation of States in 17F by the 15N(3He, n)17F Reaction*

M. P. Etten** and S. T. Thornton

Department of Physics, University of Virginia, Charlottesville, Virginia, U.S.A.

Received June 1, 1973

The absolute differential cross sections for several levels in the 15N(3He, n)17F reaction were measured at laboratory scattering angles from 0 to 140 degrees using neutron time-of-flight techniques. Angular distributions were obtained at effective helium bombarding energies of 3.8 and 4.8 MeV. A new state was identified at 5.18 ± 0.02 MeV excitation energy which is probably the analogue of the 5.217 MeV state in 18O. Spectroscopic factors were obtained for the low-lying states using distorted wave method calculations.

1. Introduction

The mirror nuclei 17O and 17F have been the object of extensive experimental and theoretical investigations because of the simplicities expected from a single nucleon outside the doubly magic closed shell nucleus 16O. Although a number of the low-lying levels display the large reduced width characteristic of a single particle state, the true situation is more complex as other low excitation states apparently mix many particle-hole configurations. Of particular interest in the present investigation was the sixth excited state of 17O ($E_x = 5.22$ MeV) for which no counterpart in 17F had been reported in the literature until recently [1–3]. With the exception of the sixth excited state of 17O the energy level parameters [4] of 17O and 17F nearly coincide through the first twelve excited states (6 MeV excitation energy). The 5.22 MeV state of 17O is weakly excited in the 16O(d, p)17O reaction [5], but is moderately excited in the 15N(3He, p)17O [6], 14N(α, p)17O [7], 13C(6Li, d)17O and 13C(7Li, t)17O [8] reactions. It has such a small neutron width ($\Gamma < 0.1$ keV) that it is not observed in the 16O(n, n')16O reaction [9] and displays no stripping pattern in the 16O(d, p)17O reaction [5]. Since the 5.22 MeV state in 17O is moderately populated in the 15N(3He, p)17O reaction, the 15N(3He, n)17F reaction should be a promising way to observe the mirror state. If the cross sections were of

* Work supported in part by the National Science Foundation through the University of Virginia Center for Advanced Studies and by the Research Corporation.

** Present address: Department of Physics, University of Georgia, Athens, Georgia.
the same order of magnitude in the mirror reactions, it would be experimentally possible to identify the neutrons resulting from the population of the mirror state in ^{17}F. Such a state was identified in ^{17}F at 5.18 ± 0.02 MeV [1]. The results of three recent experiments [1–3] give a more precise value of 5.213 ± 0.010 MeV. (The excitation energy will henceforth be quoted as 5.21 MeV in this paper.)

Further justification for performing the present measurement was to study other states in ^{17}F. Many of the states had only been identified as compound nucleus (CN) states in the $^{16}O(p, p)^{16}O$ elastic scattering reaction [10]. The present measurement confirms their existence and excitation energy assignments. The $^{15}N(^{3}He, n)^{17}F$ reaction should preferentially populate $2p - 1h$ states in ^{17}F. The character of ^{17}O states has been extensively investigated, and an investigation of the mirror analog states is useful, since the mirror state configurations should be similar.

2. Experimental Method

Pulsed singly-charged helions were obtained from the University of Virginia CN Van de Graaff accelerator and bunched with a Mobley magnet bunching system. Neutron spectra were obtained using time-of-flight techniques. Details of the experimental apparatus and procedures are given elsewhere [11].

The neutron detector consisted of a 12.7 cm diameter by 3.8 cm thick cell of NE 213 liquid scintillator coupled to a RCA model 4522 photomultiplier tube. Pulse shape discrimination was used to differentiate between neutron and γ-ray induced pulses. The low energy neutron bias was set at a pulse height equivalent to that produced by the 60 keV photopeak of ^{241}Am. The absolute efficiency of the neutron detector was determined with the computer program DETEFF [12] and was checked with efficiencies determined from measurements of the $^{2}H(d, n)$ ^{3}He reaction using gas targets of known thicknesses and the known absolute differential cross sections [13]. Both neutron and γ-ray spectra were recorded and stored on magnetic tape enabling a check of the $n-\gamma$ discrimination.

The N_2 gas was contained in a cylindrical cell 2 cm long by 0.95 cm diameter. The gas was separated from the high vacuum by a 2.3 μm Mo foil. The gas cell is described in more detail elsewhere [14]. Data were taken with and without gas, and the background runs were subtracted to obtain the neutron spectra from the N_2 gas. The only observed neutron spectra from impurities other than ^{14}N were occasional small peaks from ^{12}C and ^{16}O. The N_2 gas was enriched to greater than 96.5% ^{15}N and was used at a pressure of approximately 60 Torr.