FREQUENCY-FIELD DEPENDENCE OF TOTAL ELECTRICAL RESISTIVITY OF MAGNETICALLY-SOFT CONDUCTORS

A. F. Prokoshin, A. G. Kozlov, and A. P. Krotov

The frequency-field dependence of total electrical resistivity is studied for thin magnetically-soft alloy conductors with a crystalline and amorphous structures, and it is compared with the giant magnetoresistance effect observed for superlattices.

Recently interest has increased in the so-called giant magnetoresistance effect, i.e., a change with magnetization in a field \(H \) of active resistance \(dR/R = 1 - R(H)/R(0) \) reaching 50% in superlattices [1]. In addition, with magnetization of a ferromagnetic conductor through which an alternating current passes with frequency \(f \) there is a change not only in active \(R \), but also inductive resistance \(R_t = 2\pi fL \), where \(L \) is conductor inductance. For a single rectilinear conductor of round cross section and radius \(r \) with \(f >> 1 \) [2]

\[
L = \frac{d}{2\pi} \left(\ln \frac{2l}{r} - 1 \right) + 0.6 \frac{l}{2\pi r} \sqrt{\frac{\mu}{2\pi f/d}},
\]

where \(\mu_0 \) is a magnetic constant; \(\mu \) is absolute magnetic permeability determined from the main magnetization curve for the conductor material with magnetic field intensity \(H = l/2\pi r \) (here \(l \) is the effective current value); \(\sigma \) is conductor material conductivity. Since permeability depends on \(f \) and \(H \) it is probable that the total resistance of the conductor

\[
R_t = \left(R^2 + 4\pi^2 f^2 L^2 \right)^{1/2}
\]

will also depend on these parameters.

The aim of the present work* is to study this dependence for magnetically-soft material with low magnetostriction constants \(\lambda_5 \) whose chemical compositions are given in Table 1.

The study was performed on straight thin sections of conductors of round and rectangular cross section of magnetically-soft alloys with a crystalline (alloy 1) and amorphous (alloys 2 and 3) structures [3]. Wire of diameter 0.36 mm of alloy 1 was annealed at 1100°C for 2 h, and wire of amorphous alloys 3 (diameter about 10 \(\mu \)m) and 2 (diameter 0.19 mm) and also tape of alloy 2 (120 \(\mu \)m thick and 0.4 mm wide) were in the melt-quenched condition. Magnetization \(\lambda_5 \) for all of the test alloys was < \(10^{-6} \). Alternating current with frequency \(f = 1 \) kHz-10 MHz from a G3-112/1 generator was passed through the test conductor 0.05 m long. Voltage \(U \) in the conductor during magnetization of it along the axis was measured by a F5263 millivoltmeter in magnetic fields with intensity up 64 \(kA/m \) created by means of a small solenoid. The change in voltage \(U = F(f, H) \) was determined by the change in frequency \(f \) and field \(H \) of the total resistance of the conductor section. Total resistance \(R_t \) and inductance \(L \) at a frequency of 1 kHz were measured by means of L, C, and R-meters type E7-8.

*V. V. Sosnin, K. B. Matveeva, T. I. Shcherbakov, and V. V. Molokanov took part in this work.

I. P. Bardin Scientific Research Institute of Ferrous Metallurgy (Institute of Precision Alloys), Moscow. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 4, April, 1994.
TABLE 1

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Ni</th>
<th>Mo</th>
<th>Ti</th>
<th>Co</th>
<th>Cr</th>
<th>Si</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>68</td>
<td>3</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>58</td>
<td>-</td>
<td>11</td>
<td>16</td>
</tr>
</tbody>
</table>

Note. In all of the alloys the balance is Fe; the content of all elements is shown in wt. %.

Fig. 1. Change in relative values of total resistance \(R_t(H)/R_t(0) \) and inductance \(L(H)/L(0) \) with magnetization of a conductor 0.36 mm in diameter of alloy 1 along the axis. Frequency \(f = 1 \) kHz.

The change in \(R_t \) and \(L \) with magnetization of a conductor made of alloy 1 along its axis is shown in Fig. 1. The value of \(L \) decreases with an increase in magnetic field intensity \(H \) as a result of a reduction in \(\mu(H) \) to the limiting value independent of the field value determined by the first term in Eq. (1). The value of \(R_t \) decreases in accordance with Eq. (2) and also it tends toward a limiting value close to that for active resistance \(R \).

The dependence of \(dU = 1 - U(H)/U(0) \) on frequency with magnetic field intensity \(H = 64 \) kA/m for the test conductors is presented in Fig. 2. It can be seen that all of the curves \(dU = F(f) \) have a maximum whose position and height depend mainly on the conductor transverse dimensions: the smaller the diameter or the cross-sectional perimeter, the greater is the frequency corresponding to the maximum on curves and the higher is the maximum. It should be noted that for alloy \(dU = 76\% \) which exceeds the value of the giant magnetoresistance effect for superlattices [1].

It can be seen in Fig. 3 that with high frequencies (1-10 MHz) the value \(U(H)/U(0) \) increases at first and it is most marked (at 70\%) for alloy 2, and then it decreases. With lower frequencies (0.1 MHz) a sharp reduction in \(U(H)/U(0) \) is observed exceeding 70\% for alloy 1.

It is difficult to describe analytically the frequency dependences observed. Qualitatively they may be explained as follows. As follows from Fig. 1, the relationship \(R_t = F(H) \) only develops with the condition \(2\pi fL >> R \), i.e., with quite high frequencies and permeability. This may explain the increase in \(dU \) with an increase in frequency (Fig. 2). Active resistance \(R \) also increases with an increase in frequency as a result of a surface effect and loss in hysteresis and eddy currents. At the same time the value of \(\mu \) with an increase in frequency decreases as a result of the same factor. In view of this the total resistance changes uniformly with a change in frequency and it passes through a maximum whose position is determined by...