Levels of 118Sn Populated in the Decay of 118In and 118Sb Isomers

J. HATTULA*, E. LIUKKONEN
Department of Physics, University of Helsinki, Helsinki, Finland

J. KANTELE
Department of Physics, University of Jyväskylä, Jyväskylä, Finland

Received October 2, 1969

Gamma-rays in the disintegration of 5.0 s (1$^+$), 8.5 s (7$^-$, 8$^-$), and 4.4 min (4$^+$, 5$^+$) 118In isomers and of 3.5 min (1$^+$) and 5.1 h (8$^-$) 118Sb isomers have been investigated using Ge(Li) detectors and Ge(Li)-NaI(Tl) coincidence spectrometers. The decay schemes of these isomers have been constructed incorporating 17 levels in the product nucleus, 118Sn, at the following energies (in keV): 0 (0$^+$), 1229.5 (2$^+$), 1757.5 (0$^+$), 2043.1 (2$^+$), 2056.4 (0$^+$), 2280.3 (4$^+$), 2321.3 (5$^-$), 2326.4 (1$^+$, 2$^+$), 2402.7 (4$^+$), 2488.8 (4$^+$), 2496.5 (0$^+$), 2575.2 (7$^-$), 2677.3, 2733.7 (2$^+$), 2929.8, 2963.5 (4$^+$), and 3137.1 (0$^+$). The structure of 118Sn is briefly discussed in view of results from recent quasiparticle-model calculations.

1. Introduction

This work is a continuation of a previous study1 of 118Sn levels populated in the decay of some of the 118In and 118Sb isomers, which was carried out several years ago using scintillation detector techniques. Our first experiments on the decay of 118In isomers employing Ge(Li) detectors2 revealed the existence of a new 8.5 s isomeric state in this nuclide. In the present paper, we give a more complete account on our results on the decay of all known 118In and 118Sb isomers.

The only recent investigations of these isomers that we know of are those by Rahmouni3 on the 118Sb isomers and by Schwartzbach and Münzel4 on the 5.0 s and 4.4 min 118In isomers. Our data do not agree with all of the results of the former work; in the latter one, little additional information was obtained, because only scintillation detectors were used. Recently, detailed information on the structure of a large number of levels in 118Sn has been gathered in many charged-particle reaction and

* Present address: Department of Physics, University of Jyväskylä, Jyväskylä, Finland.
scattering experiments. However, electromagnetic transitions in 118Sn and the structure of the 118In and 118Sb isomers have not been investigated in these experiments, so that further disintegration studies were necessary for obtaining a more complete picture of the 118In, 118Sn and 118Sb isotopes.

Most of the recent calculations of the level structure of the even tin isotopes are based on the quasiparticle method in its various forms. However, since mainly qualitative agreement between theory and experiment is generally achieved, and only relatively few of the theoretical results can directly be compared with the available experimental data on 118Sn, we shall only briefly discuss our data in view of the quasiparticle models.

2. Experimental Procedure

Source Preparation

The 118In activities were produced by bombarding an enriched (96.6%) metallic 118Sn sample* weighing 500 mg with 14–15 MeV neutrons from the Sames Model T 400 kV neutron generator at the Physics Department of the University of Helsinki. The neutron flux was typically about 10^{10} neutrons/cm2 s. For fast transportation of the 5.0 and 8.5 s 118In sources, a pneumatic rabbit system having a transfer time of less than 50 ms was employed.

The 3.5 min 118Sb isomer was studied using a source containing its parent, 6.0 d 118Te, produced by bombarding natural antimony metal with 90 MeV protons from the synchrocyclotron of the Gustaf Werner Institute, Uppsala, Sweden. After a chemical separation, the tellurium fraction was mass-separated at the Physics Department of the University of Helsinki. The mass-separated sources of 118Te contained only small amounts of impurities, mainly 4.7 d 119mTe. However, since the decay of this activity is well established, it presents no difficulties in this work.

* Obtained from Stable Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.