Energies of the $K\alpha_1$, $K\alpha_2$, $K\beta_1$, and $K\beta_3$ X Rays and the K-shell Binding Energies in Np, Pu, and Am*

G. C. NELSON and B. G. SAUNDERS
Lawrence Radiation Laboratory, University of California,
Livermore, California, USA

S. I. SALEM
California State College, Long Beach, California, USA

Received April 3, 1970

The energies of the $K\alpha_1$, $K\alpha_2$, $K\beta_1$, and $K\beta_3$ X rays in Np, Pu, and Am have been measured with a Cauchois-type bent-crystal spectrometer. The K-shell binding energies have been determined by combining the measured $K\alpha$ and $K\beta$ X-ray energies with the previously determined L_{11}, L_{111}, M_{11}, and M_{111} binding energies. The $L_{11}-L_{111}$ and $M_{11}-M_{111}$ binding energy differences obtained from the $K\alpha_1-K\alpha_2$ and $K\beta_1-K\beta_3$ X-ray energies agree, within the experimental error, with the differences obtained from the L_{11}, L_{111}, M_{11}, and M_{111} binding energies previously reported.

Introduction

Accurate data on X-ray energies and binding energies are needed in beta and gamma decay studies. Knowing the binding energy permits internal conversion electron data to be correlated with gamma ray data. X-ray energies are of use for unambiguously identifying a given element, as for example following electron capture or internal conversion.

X-ray and binding energies have been measured for most elements through uranium. See for example the tables of Bearden1 and Bearden and Burr2. However, little work has been done on the transuranic elements, and most of this has been concentrated on L or higher shells.

In this paper we present the results of measurements of the $K\alpha_1$, $K\alpha_2$, $K\beta_1$, and $K\beta_3$ X-ray energies of Np, Pu, and Am. The $K\alpha_1$ and $K\alpha_2$ X-ray energies were reported earlier3. The present values are within the experimental error but differ slightly from those we reported in Ref.3 due to a reevaluation of the calibration lines and the fundamental constants4. From these energies and the previously reported L and M binding energies2,5 we have deduced the K binding energies for Np, Pu, and Am.

* Work performed under the auspices of the U.S. Atomic Energy Commission.
Experimental Procedure

The present measurements were carried out with a 2 m Cauchois-type transmission bent-crystal spectrometer. This instrument has been described in detail in Refs. 3, 6, 7. Fig. 1 is a schematic drawing of the spectrometer, which consists basically of an extended X-ray source, a diffraction crystal, and a traveling slit and detector. The X rays are produced by fluorescing samples of the elements with a 182Ta source approximately 80 Ci in strength. Our samples were 4 g of 237Np, 51 g of 239Pu, and 1 g of 241AmO$_2$, sealed in aluminum cans to prevent radioactive contamination. The fluoresced X rays pass through a Pb precollimator and are diffracted by the (310) planes of a quartz crystal 2 mm thick, bent to a radius of 2 m. The diffracted X rays are scanned by the 0.17-mm-wide traveling slit and recorded in a 2 cc Ge(Li) detector. A single-channel analyzer is used to select the region of interest. The scanning consists of discrete steps 0.01 mm each. The counting time per step varies from 4 to 25 min depending on the intensity of the line being studied.

The peak position was determined from a nonlinear least-squares fit of a peak-shape function to the experimental data points. The peak-shape function consists of a fold of a Lorentzian, which represents the natural shape of the X ray, with a Gaussian, which represents the instrumental response. The resulting function is folded into the detector slit. Least-squares fits to the Pb$K\alpha_1$ calibration line and the Pu$K\beta_1$