A Comparison of Some Bounds
for the Nontrivial Eigenvalues of Stochastic Matrices

Christoph Zenger

Received October 20, 1971

Summary. Some recently published bounds for the nontrivial eigenvalues of stochastic matrices [1, 2, 4, 5] are compared. It is shown that the Deutsch bound [1] is the best of these bounds and is only slightly improved by a bound given in [3].

In [5] Schaefer gave a bound for the nontrivial eigenvalues of stochastic matrices:

Let m be the smallest and M be the largest element of the row-stochastic matrix A of order n with row-sum s.

Then the nontrivial eigenvalues λ of A satisfy

$$|\lambda| \leq \min (s - n \cdot m, n \cdot M - s).$$

Brauer [2] improved this bound:

Let m_v be the minimum and M_v be the maximum of the elements of the v-th column ($v = 1, 2, \ldots, n$) and

$$t = \sum_{v=1}^{n} m_v, \quad T = \sum_{v=1}^{n} M_v$$

then

$$|\lambda| \leq \min (s - t, T - s).$$

We show that both bounds are weaker than the Deutsch bound [1]

$$|\lambda| \leq b(A) = \frac{1}{2} \max_{i,j} \sum_{k} |a_{ik} - a_{jk}|.$$

Indeed we have $\frac{1}{2} |u - v| = \max (u, v) - \frac{1}{2} (u + v)$, therefore

$$b(A) = \max_{i,j} \sum_{k} \left(\max (a_{ik}, a_{jk}) - \frac{1}{2} (a_{ik} + a_{jk}) \right)$$

$$= \max_{i,j} \sum_{k} \max (a_{ik}, a_{jk}) - s$$

$$\leq \sum_{k} \max_{i} a_{ik} - s = T - s.$$

1 These are the eigenvalues not belonging to the eigenvector $(1, 1, \ldots, 1)^T$.
From \(\frac{1}{2} |u - v| = \frac{1}{2} (u + v) - \min (u, v) \),
\[
b(A) = \max_{i, j} \left(\frac{1}{2} (a_{ik} + a_{jk}) - \min (a_{ik}, a_{jk}) \right)
\]
we get the other inequality in the same manner.

The proof shows that it is sufficient to take the maximum value \(M_r \) in Brauer's bound from only two rows instead of all rows, where the two rows are chosen such that the corresponding \(T \) is maximal. Clearly the analogous consideration holds for the minimum values \(m_r \). If \(\tilde{T} \) and \(\tilde{t} \) are determined in this way then the above proof shows that
\[
s - \tilde{t} = \tilde{T} - s = \min (s - \tilde{t}, \tilde{T} - s) = b(A)
\]
and the modified Brauer bound coincides with the Deutsch bound.

Recently Hadeler gave some bounds for the nontrivial eigenvalues of positive operators \([4]\). Applying his results to the case of stochastic matrices he got the following bounds:
\[
|h| \leq h_1(A) := s - n \cdot m
\]
\[
|h| \leq h_2(A) := \min \max_{i} \sum_{k} |a_{ik}a_{i1} - a_{ij}a_{jk}|
\]
\[
|h| \leq h_3(A) := \min \max_{i} \sum_{k} |a_{ik} - a_{jk}|.
\]

\(h_1(A) \) is strengthened by the Schaefer bound. Moreover we have \(h_2(A) \geq h_3(A) \geq b(A) \) for all stochastic matrices.

The second inequality was already stated by Hadeler. The first inequality is a consequence of the relations
\[
h_2(A) \geq \min \max_{i} \sum_{k} \sum_{l} |a_{ik}a_{il} - a_{fk}a_{il}|
\]
\[
= \min \max_{i} \sum_{k} |a_{ik} - a_{jk}| = h_3(A).
\]

A more detailed investigation of the situation of the nontrivial eigenvalues of stochastic matrices is given in \([3]\). In this paper a set \(G(A) \) of complex numbers (actually a generalized Bauer field of values) containing all nontrivial eigenvalues of \(A \) is constructed. For the corresponding numerical radius \(r(A) = \max_{z \in G(A)} |z| \) we have
\[
r(A) = \frac{1}{2} \max_{i, j} \left(a_{ii} + a_{jj} - a_{ij} - a_{ji} + \sum_{k \neq i, j} |a_{ik} - a_{jk}| \right).
\]
Obviously we have \(r(A) \leq b(A) \) for all row-stochastic \(A \). Moreover in \([3]\) an example for a matrix \(A \) is given with \(r(A) < b(A) \).

Thus \(r(A) \) is the best of all bounds considered in this paper.

References