A Constructive Method of Solving the Liapounov Equation for Complex Matrices*

Rita Meyer-Spasche

Received August 30, 1971

Summary. This paper describes a method of solving the Liapounov equation (1) \[HM + M^*H = 2D, \]
where \(M \) is in upper Hessenberg form, \(D \) diagonal. Initialising the first row of the matrix \(A \) arbitrarily, one can find (by solving equations with one unknown) the unknown elements of \(A \) such that (2) \[A M + M^*A^* = 2F, \]
where \(A \) differs from a Hermitian matrix only in that its diagonal elements need not be real. \(F \) is a diagonal matrix which is uniquely determined by the first row of \(A \). By solving Eq. (2) for several initial values one may generate several matrices \(A \) and \(F \) (in the most unfavourable case \(2n-1 \) \(A \)'s and \(F \)'s are needed) and superpose them to get \(n \) linearly independent Hermitian matrices \(H_i \) and \(D_i \) respectively for which \[H_iM + M^*H_i = 2D_i \]
is valid. Then one can solve the real system \[\sum_{i=1}^{n} \lambda_j H_j = D \]
to obtain the solution \[H = \sum_{j=1}^{n} \lambda_j H_j \]
of Eq. (1).

1. Introduction

In [1] it is shown how the stability problem can be solved for real \(n \times n \) matrices. This involves a method of solving the Liapounov equation \(SM + M^*S = I \) for real \(n \times n \) Hessenberg matrices \(M \). Programming this method yielded very satisfactory results, and so it was felt desirable to extend it to complex matrices.

2. Preliminaries

Let \(\mathbb{R} \) be the field of real numbers, \(\mathbb{C} \) the field of complex numbers. Let \(M \in L(\mathbb{C}^n) \), i.e. a complex \(n \times n \) matrix, and let \(\lambda_1, \ldots, \lambda_n \) be the eigenvalues of \(M \). The following theorem is then valid ([2], §4, p. 78):

Theorem 1. If \(\Delta(M) := \prod_{i,j=1}^{n} (\lambda_i + \bar{\lambda}_j) \neq 0 \) and \(P \) is a given Hermitian positive-definite matrix, then there exists a unique \(H \) satisfying \(HM + M^*H = P \), and \(H \) is Hermitian.

Remark. \(HM + M^*H = 0 \) has only the trivial solution \(H = 0 \) iff \(\Delta(M) \neq 0 \) is valid ([2], §2, p. 75).

For the sake of simplicity we will specially choose \(P = 2D \), \(D \) diagonal, in the following. \(D \) is then real because \(D^* = D \). The following definitions and lemmas are direct generalizations of the results for real matrices in [1], §2.

* "This work was performed under the terms of the agreement on association between the Max-Planck-Institut für Plasmaphysik and Euratom".
Definition. A Hermitian matrix H and a real diagonal matrix D are called a Liapounov pair with respect to M if they satisfy the equation

$$HM + M^* H = 2D. \quad (1)$$

Lemma 1. Two matrices H and D, $H = H^*$, $D = D^*$ diagonal, form a Liapounov pair with respect to M iff there is a complex matrix T, $T^* = -T$, such that

$$HM = T + D.$$

Proof. 1) $HM = T + D \Rightarrow HM + M^* H = T + D + (T + D)^* = 2D$ because $T + T^* = 0$. H, D form thus a Liapounov pair.

2) Let $HM + M^* H = 2D$, $T := HM - D \Rightarrow T^* = M^* H - D^*$, and $T + T^* = HM - D + M^* H - D = 0$.

Lemma 2. Let $A(M) \neq 0$. If $\{H_j, D_j\}, j = 1, \ldots, m$, are Liapounov pairs with respect to M, then if H_j, \ldots, H_m are linearly independent in \mathbb{R}, so too are D_1, \ldots, D_m.

Proof. Let us assume that D_1, \ldots, D_m are linearly dependent, i.e. there are $a_1, \ldots, a_m \in \mathbb{R}$, $(a_1, \ldots, a_m) \neq (0, \ldots, 0)$, such that $\sum_{j=1}^m a_j D_j = 0$. One then has

$$\sum_{j=1}^m a_j D_j = \sum_{j=1}^m a_j (H_j M + M^* H_j) = \left(\sum_{j=1}^m a_j H_j \right) M + M^* \left(\sum_{j=1}^m a_j H_j \right) = 0.$$ According to the remark following Theorem 1 this means, however, that the H_j are linearly dependent. Lemma 2 has thus been proved.

We will now confine our attention to matrices M in upper Hessenberg form with non-zero elements in their lower co-diagonal. As explained in [1], p. 1 f, this is not an essential constraint.

In the following we shall reduce solution of the Liapounov Eq. (1) to repeated solution of the equation

$$HM = T + D, \quad T^* = -T, \quad D^* = D \text{ diagonal.} \quad (2)$$

For this purpose the solvability of Eq. (2) has to be studied more closely.

Lemma 3. Let M be an upper Hessenberg matrix with non-zero elements in the lower co-diagonal, and let $h := (a_1, a_2 + i b_2, \ldots, a_n + i b_n)$. There then exists a unique complex matrix A with the following properties:

1. A contains h as the first row
2. $A = B + i C$, $B^* = B$, $C = \text{diag} (0, c_2, \ldots, c_n) \in L(\mathbb{R}^n)$.
3. $AM = T + D$, $T^* = -T$, $D^* = D \text{ diagonal matrix.}$

Proof. Let $A = (a_{ij}), B = (b_{ij}), AM = (a_{mj})$. As the first row of A is given, we can calculate the first row of $AM = T + D$. Since B is Hermitian and T anti-Hermitian, the first columns of A and AM are then known, hence a_{21} and am_{21} in particular. a_{22} is now calculated from

$$a_{21} m_{21} + a_{22} m_{21} = am_{21} = -\overline{am_{12}}.$$