

L^1 and L^∞ Uniform Convergence of a Difference Scheme for a Semilinear Singular Perturbation Problem

Martin Stynes1* and Eugene O'Riordan2

1 Department of Mathematics, University College, Cork, Ireland
2 Department of Mathematics, Dundalk Regional Technical College, Dundalk, Ireland

Summary. A nonlinear difference scheme is given for solving a semilinear singularly perturbed two-point boundary value problem. Without any restriction on turning points, the solution of the scheme is shown to be first order accurate in the discrete L^1 norm, uniformly in the perturbation parameter. When turning points are excluded, the scheme is first order accurate in the discrete L^∞ norm, uniformly in the perturbation parameter.

Subject Classifications: AMS(MOS): Primary 65L10; Secondary 34B27; CR: G.1.7.

1. Introduction

We consider the problem

\[\varepsilon y''(x) + a(x) y'(x) - d(x, y) = 0, \quad 0 < x < 1 \]

\[y(0) = A, \quad y(1) = B \]

where A, B are given constants, ε is a parameter in $(0, 1]$, $a(\cdot) \in C^1([0, 1])$, $d \in C^1([0, 1] \times \mathbb{R})$ and

\[d_y(x, y) \geq \delta > 0 \quad \text{on} \quad [0, 1] \times \mathbb{R} \]

\[d_y(x, y) + a'(x) \geq \delta > 0 \quad \text{on} \quad [0, 1] \times \mathbb{R}, \]

where δ is independent of x and y.

Note that no restriction is placed on the zeroes of $a(\cdot)$. This problem is easily seen to have a unique solution (\S 2).

Using a Petrov-Galerkin finite element method on a uniform mesh of width h we generate a nonlinear difference scheme for the problem. For h sufficiently small (depending only on $a(\cdot)$ and δ) we prove that this scheme has a unique

* Partly supported by the Arts Faculty Research Fund of University College, Cork
solution. This solution is shown to be within $O(h)$ of the solution to (1.1) (1.2) (1.3) in the discrete L^1 norm, uniformly in ε (see the end of this section for definitions of notation). Furthermore, if we also assume that the problem has no turning points, i.e., that $a'(\cdot)$ does not vanish anywhere in $[0, 1]$, we can in a natural way strengthen this result to $O(h)$ accuracy in the discrete L^∞ norm. When (1.1) is linear with C^2 coefficients and $d(x, y) = b(x)y + f(x)$, an intermediate case is that of an isolated simple turning point: suppose $a(\frac{1}{2}) = 0$,

$$a(x) \neq 0 \quad \text{for} \quad x \neq \frac{1}{2}, \quad a'(\frac{1}{2}) > 0, \quad a'(x) \geq a'(\frac{1}{2})/2 \quad \text{for} \quad 0 < x < 1,$$

and $\lambda \equiv b(\frac{1}{2})/a'(\frac{1}{2})$ is not an integer. Then for $h = 1/N$ with N even, the scheme is accurate of order h^{λ_1} in the discrete L^∞ norm, where $\lambda_1 = \min \{\lambda, 1\}$. In § 6 we present numerical evidence to substantiate these results.

Niijima [9] has recently considered the problem.

$$\varepsilon y''(x) - (a(x) y(x))' - b(x, y) = 0, \quad 0 < x < 1 \tag{1.4}$$

$$y(0) = \lambda, \quad y(1) = B$$

where $a(\cdot)$ and $b(\cdot, \cdot)$ are C^2 functions. He has derived a difference scheme for (1.4) whose solution (on a uniform mesh of width h) is within $O(h)$ of the solution to (1.4) in the discrete L^1 norm. (Our proof of the corresponding result for (1.1) (1.2) (1.3) imitates part of the argument of [9]).

Berger [1] has shown that the same scheme is $O(h)$ accurate in the discrete L^∞ norm when the last condition of (1.4) is replaced by $a(\cdot) \geq \delta > 0$ on $[0, 1]$ and $b = 0$.

Lorenz [7] has considered (1.1) with C^2 coefficients, $a(\cdot) \geq \delta > 0$ and $d(\cdot, \cdot) \geq 0$. He has shown that a natural generalization of II'in's scheme [6] than yields $O(h)$ accuracy in the discrete L^∞ norm.

In comparison, the analysis presented here requires less differentiability of the differential equation coefficients than do previous authors, and convergence results for the turning and nonturning point situations are obtained in a unifying framework.

The structure of the paper is as follows. Section 2 contains existence, uniqueness and a priori bounds for the solution of (1.1). Our difference scheme is generated in § 3 using finite elements. The L^1 result is proved in § 4 via the contraction mapping principle. We then obtain in § 5 a formula for the nodal errors in terms of discretized Green's functions. Substituting the L^1 bound into this formula and using the hypothesis $a(x) \neq 0, x \in [0, 1]$ we easily derive our L^∞ error bound.

Notation. Throughout this paper C denotes a generic positive constant independent of x, y, h and ε. We say a quantity g is $O(h)$ if $|g| \leq Ch$ for all x, h and ε. If $z = (z_0, \ldots, z_N) \in \mathbb{R}^{N+1}$, define its discrete L^1 norm to be $\|z\|_1 = h \sum_{i=0}^{N} |z_i|$ and its discrete L^∞ norm to be $\|z\|_\infty = \max_{0 \leq i \leq N} |z_i|$. We use \tilde{y} to denote the $(N+1)$-dimensional vector $(y_0, y_1, \ldots, y_N) \equiv (y(x_0), y(x_1), \ldots, y(x_N))$ where $x_i = ih$.