Hadronic Jets Associated with a Photon Trigger

A. Nicolaides
Department of Theoretical Physics, University of Thessaloniki, Thessaloniki, Greece
Received 20 October 1980, in revised form 28 November 1980

Abstract. We consider, within Quantum Chromodynamics, the fragmentation function of a quark into a hadron and a photon. A simple analytic expression is given which is adequate for practical applications. A measurable quantity is proposed, which is independent of the hadronization process and tests the underlying dynamics.

Due to the point-like nature of the photon, the structure functions of the photon are entirely calculable within Quantum Chromodynamics [1]. The distribution function of a quark (or gluon) in a photon can be studied in the photoproduction experiments [2], while the fragmentation function of a quark into a photon can be studied at machines like PETRA [3]. A simple parametrization of these functions can be found in [4]. More informations can be extracted by examining multiparticle spectra, namely the distribution of a quark pair within a photon [5] or the fragmentation function of a quark into a quark and a photon [6]. We examine here in detail the latter case.

Consider a highly virtual quark of invariant mass Q which by emitting gluons degrades down to invariant mass p, emits a photon and by further gluonic emission ends up into a quark of mass Q_0. Following this picture [7] the fragmentation function $f_{q/q}(x_1, x_2, Q^2, Q_0^2)$ of a quark into a quark and a photon carrying fractions of momentum x_1 and x_2 respectively is given in the valence approximation* by

$$f_{q/q}(x_1, x_2, Q^2, Q_0^2) = \frac{Q^2}{Q_0^2} \frac{dp^2}{p^2} \int dx_1 dx_2 x_1^{n_1-1} x_2^{n_2-1} \phi(x_1, x_2)$$

where

$$\phi(z) = \frac{2\pi e^2}{z(1-z)}$$

Defining the double moments

$$\phi(n_1, n_2) = \int dx_1 dx_2 x_1^{n_1-1} x_2^{n_2-1} \phi(x_1, x_2)$$

we immediately obtain

$$f_{q/q}(n_1, n_2, Q^2, Q_0^2) = \frac{Q^2}{Q_0^2} \int \frac{dp^2}{p^2} f_{q/q}(n_1 + n_2 - 1, Q^2, p^2) \phi(n_1, n_2)$$

from which

$$\phi(n_1, n_2) = \int dz z^{n_1-1} (1-z)^{n_2-1} \phi(z)$$

Using also

$$f_{q/q}(n_1, Q^2, p^2) = \left[\frac{\phi(Q^2)}{\phi(p^2)} \right]^{(d)}$$

we find after integration

$$f_{q/q}(n_1, n_2, Q^2, Q_0^2) = \frac{\alpha}{2\pi e^2} \ln \frac{Q^2}{A^2} (B(n_1, n_2-1) + B(n_1+2, n_2-1))$$

where

$$B(n_1, n_2) = \frac{1}{1 + d(n_1 + n_2 - 1) - d(n_1) - d(n_2)}$$

The term in the square brackets represents the QCD correction to the Born term. For consistency check we can observe the following: integrating $f_{q/q}(x_1, x_2, Q^2, Q_0^2)$ over x_1 we should find the photon distribution within a quark. Indeed, by putting $n_1 = 1$ in (7), we recover, ignoring subleading logarithms, the valence piece of $f_{q/q}$ [4].

To invert the double moments, a generalization

* We work within the valence approximation, because we are interested in the large $x_1 + x_2$ region where the valence term dominates.
of Yndurain's method [8] has been proposed [9]. However this method is not accurate. Rather we can obtain an analytic expression which is exact in the large $x_1 + x_2$ region. This is not a drawback, since from kinematical considerations the fragmentation functions are explored mostly in the large x region. When $x_1 + x_2 \to 1$ we can substitute in (1) the large x approximation for $f_{q/q}(x, Q^2, k^2)$

$$
\frac{f_{q/q}(x, Q^2, k^2)}{f_{q/q}(x, Q^2, k^2)} = \exp(\frac{BT}{T(A T)}(1 - x)A^{-1}T - 1)
$$

where $T = \ln \left[\frac{a_1(Q_0^2)}{a_1(Q_2^2)} \right]$ and A, B are constants [4]. We find

$$
\frac{f_{q/q}(x_1, x_2, Q^2, Q_0^2)}{f_{q/q}(x_1, x_2, Q^2, Q_0^2)} = \frac{\alpha}{2\pi^2} \ln \left[\frac{Q^2 Q_0^2}{Q^2 Q_0^2} \right] \frac{1}{A^2 1 - x_1 + A \ln 1 - x_2}
$$

with $T = \ln \left[\frac{a_1(Q_0^2)}{a_1(Q_2^2)} \right]$. In the limit $T \to 0$ the term in the square bracket gives $\delta(1 - x_1 - x_2)$. Figure 1 shows $f_{q/q}$ for the u quark, as given by (9), for two values of Q^2 ($Q = 30, 200$ GeV) and using $Q_0^2 = 3$ GeV2.

To obtain the hadron–photon distribution within a quark we have to convolute $f_{q/q}(x_1, x_2, Q^2, Q_0^2)$ with the distribution $f_{h/q}(x, Q_0^2)$ which is extracted from experiment. Parametrizing

$$
f_{h/q}(x, Q_0^2) = c(1 - x)
$$

it is easy to find

$$
\frac{d\sigma^{\pi^0\gamma}}{d^2x} = \frac{1}{2\pi^2} \frac{\alpha}{c} \ln \left[\frac{Q^2 Q_0^2}{Q^2 Q_0^2} \right] \frac{1}{A^2 1 - x_1 + A \ln 1 - x_2}
$$

Figure 2 shows the above function for the u quark and we have used $c = 0.3$.

At the electron–positron storage rings we can measure separately the $\pi^0\gamma$ and π^0 inclusive spectra. Then the following quantity

$$
R(x_1, x_2) = \frac{d\sigma^{\pi^0\gamma}}{d^2x} \frac{d\sigma^{\pi^0}}{d^2x}
$$

is somehow stabilized and it is in rough agreement with (9) for $x > 0.3$.