Atomic Masses of $^{147m, 148m, 149m}$Tb, 148Dy, $^{150m, 152m}$Ho
Derived from Decay Properties

II. Physikalisches Institut der Universität, Göttingen, Federal Republic of Germany

R. Michaelsen
Hahn-Meitner-Institut für Kernforschung, Berlin, Germany

Received November 9, 1984

Using nuclear fusion reactions of 40Ar ions with 112Cd, 114Sn and 116Sn and subsequent γ-ray spectroscopy, the probability ratios of positron emission and electron capture, β^+ / EC_γ and $\beta^+ / (EC + \beta^+)$, are determined for individual β-transitions in the decay of $^{147m, 148m, 149m}$Tb, 148Dy and $^{150m, 152m}$Ho. From comparison with theoretical ratios the following Q_{EC} values, given in keV, are derived: 147mTb, 4.620(60); 148mTb, 5.730(30); 149mTb, 3.610(50); 148Dy, 2.680(30); 150mHo, 6.625(120) and 152mHo, 6.470(80). The present decay-energy data are compared with earlier measurements and the new information obtained for the mass surface around 146Gd is discussed.

1. Introduction

From spectroscopic investigations [1–4] it was concluded that at $Z=64$ a large energy gap in the single-particle spectrum exists, which intensifies effects of the $N=82$ neutron-shell closure. It is therefore of interest to establish accurately the atomic masses in this region of the nuclear chart in order to investigate the influence of the expected double-magic behaviour on the mass surface.

In the present communication we report on Q_{EC} measurements of $^{147m, 148m, 149m}$Tb, 148Dy and $^{150m, 152m}$Ho, continuing our earlier work of mass measurements by γ-spectroscopic techniques [5–7]. Preliminary results of our investigations were reported recently [8].

The decay energies were derived from measurements of the electron-capture to positron-decay ratios EC/β^+ for specific β-transitions and comparison of the experimental (EC/β^+) values with theoretical ratios, which are strongly energy dependent. Presently, only allowed transitions were investigated, so that nuclear-structure effects were absent in the theoretical EC/β^+ ratios.

* Present address: Fa. Canberra Electronic GmbH, D-6000 Frankfurt, FRG

The measured Q_{EC} values are connecting the atomic masses of the β-decaying nuclei to daughter nuclei, which are again β or α radioactive. In particular, the nuclei $^{147m, 148m, 149m}$Tb and $^{150m, 152m}$Ho are connected by Q_{EC}- and Q_α-values to 144Sm, 145Sm, 145Eu, 146Gd and 147Gd. The masses of these nuclei are well known: 144Sm [9,35] is stable, the masses of 145Sm [10], 145Eu [5] and 147Gd [6] were redetermined in our earlier investigations, and accurate mass values for 146Gd were recently derived independently by reaction studies [11–13].

The Q_{EC} values of 149mTb, 152mHo and 148mTb can be tested for consistency with other decay-energy data, since the nuclei 149mTb, 149Gd, 145Eu and 145Sm, as well as 152mHo, 152Dy, 148mTb and 148Gd, form closed cycles connecting their masses by Q_{EC} and Q_α energies. The decay energies within such a closed cycle are consistent, if the total sum of the experimental decay-energies along the cycle is vanishing.

We have already earlier reported a decay energy of 148Dy [14]. Since that value deviates by 0.15 MeV from the one given by Spanier et al. [15], which was also derived from a measurement of a EC/β^+ ratio, the 148Dy decay was reinvestigated. A decay-energy...
Table 1. Information on the production and the investigations of 147mTb, 148mTb, 149mTb, 148Dy and 150mHo and 152mHo

<table>
<thead>
<tr>
<th>Decaying nucleus</th>
<th>147mTb</th>
<th>148mTb</th>
<th>149mTb</th>
<th>148Dy</th>
<th>150mHo</th>
<th>152mHo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured quantity*</td>
<td>β^+/EC$_{K}$</td>
<td>β^+/EC$_{K}$</td>
<td>β^+/EC$_{K}$</td>
<td>β^+/EC$_{K}$</td>
<td>β^+/EC$_{K}$</td>
<td>β^+/EC$_{K}$</td>
</tr>
<tr>
<td>Target material (degree of enrichment (%)</td>
<td>112Cd(99)</td>
<td>112Cd(99)</td>
<td>112Cd(99)</td>
<td>114Sn(70)</td>
<td>116Sn(98)</td>
<td></td>
</tr>
<tr>
<td>Nuclear reaction</td>
<td>40Ar,p4n</td>
<td>40Ar,p3n</td>
<td>40Ar,p2n</td>
<td>40Ar,p4n</td>
<td>40Ar,p3n</td>
<td></td>
</tr>
<tr>
<td>Beam energy (MeV)</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>182</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Tape cycle-time (s)</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

* The β^+/EC$_{K}$ ratio was obtained by measuring the intensity of annihilation quanta relative to the X-ray intensity. The β^+/EC$+\beta^+$ ratio was obtained by measuring the intensity of annihilation quanta relative to the cascading γ-ray intensity.

The determination of 148mTb was also published earlier [14]. Presently, 148mTb was strongly produced along with the other investigated terbium isotopes. We repeated therefore the measurement of 148mTb as an additional consistency test.

2. Experimental Procedure

The experiments were carried out at the VICKSI accelerator at the Hahn-Meitner-Institut in Berlin. Collection and transportation of the produced activities were performed by using the He-jet technique combined with a fast cartridge-tape system [16, 17]. Detailed information on the production and the experiments is summarized in Table 1 and also described below.

Self-supporting targets of enriched 112Cd, 114Sn and 116Sn, having a thickness of 2 mg/cm2, were bombarded by 200 to 240 MeV 40Ar beams at typical beam intensities of 5·1011 atoms s$^{-1}$. Recoiling reaction products from the target were thermalized in helium gas (pressure: 70 kPa), which had been saturated with NaCl aerosol by passing the gas through an oven containing NaCl crystals heated to about 700°C. An improvement of the transport efficiency was obtained by letting the gas pass a liquid N$_2$ cooling trap with molecular sieve before entering the oven. The helium gas was swept out from the target chamber through a 10 m long Teflon capillary (inner diameter 1.2 mm) to the tape system. Reaction products transported along with the gas were collected on the tape and periodically moved to a counting position with several Ge detectors for measuring coincidences of γ-rays and X-rays.

The β^+ intensity was derived from the 511 keV peak intensity. In order to localize the source of annihilation radiation the tape passed through a narrow slot in an aluminium cylinder at the counting position. The cylinder wall was thick enough to stop all positrons with an energy of less than 4 MeV.

Two different detector arrangements were used. In a first experiment we employed four Ge detectors: two Ge(Li) detectors, equipped with lead, cadmium and copper absorbers, and two intrinsic Ge detectors. The four detectors were arranged in 90° geometry, which made a correction for angular correlation necessary.

This correction was smaller with another set-up, which consisted of only three Ge detectors, one large Ge(Li) and two intrinsic γ/X Ge detectors, each having an angle of 120° relative to the others.

Standard fast-slow coincidence set-ups were used to connect each detector with its two neighbours. Energy signals of the detectors were recorded together with time-to-amplitude converter (TAC) signals on magnetic tape and played back later for analysis with a computer.* The energy and efficiency calibration of the detectors was obtained with calibrated sources of 22Na, 133Ba, 152Eu, 226Ra and 241Am.

An additional calibration was performed to check the coincidence efficiencies: after having finished the on-line experiment, a source of 52Mn was placed in the counting position and data were recorded in the same way as during the preceding measurement. The decay characteristic of 52Mn is especially favourable for such a calibration, since the decay scheme is simple and well known, and the strong β-branch from the initial 6$^+$ state to the 6$^+$ state at 3.11 MeV in 52Cr has nearly the same EC/β^+ ratio as expected for the rare-earth isotopes under study. Furthermore, the data analysis was performed with the UNIVAC 1100 computer of the Gesellschaft für Wissenschaftliche Datenverarbeitung in Göttingen GmbH.